FORMAL MODEL AND ANALYSIS OF USAGE CONTROL

by

Xinwen Zhang
A Dissertation
Submitted to the
Graduate Faculty
of
George Mason University
in Partial Fulfillment of the
the Requirements for the Degree
of
Doctor of Philosophy
Information Technology

Committee:

Ravi S. Sandhu, Dissertation Director

Francesco Parisi-Presicce,
Dissertation Co-director

Larry Kerschberg

Kris Gaj

Daniel A. Menase, Associate Dean
for Research and Graduate Studies

Lloyd J. Griffiths, Dean, The Volgenau School
of Information Technology and Engineering

Date: Summer Semester 2006
George Mason University
Fairfax, Virginia

Formal Model and Analysis of Usage Control

A dissertation submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Xinwen Zhang
Bachelor of Engineering
Huazhong University of Science and Technology, 1995
Master of Engineering
Huazhong University of Science and Technology, 1998

Director: Ravi S. Sandhu, Professor
Department of Information and Software Engineering
Co-director: Francesco Parisi-Presicce, Associate Professor
Department of Information and Software Engineering

Summer Semester 2006
George Mason University
Fairfax, Virginia

Copyright(©) 2006 by Xinwen Zhang
All Rights Reserved

Dedication

To my parents, who have always inspired and encouraged me to continue my lifelong

dream.

My special dedication goes to my lovely wife, Wei Xiong, who has been always supporting

me and sharing all the difficult times with great love and sacrifices.

To my brothers and sisters, brothers-in-law and sisters-in-laws, who have given me great

support for my study.

Acknowledgments

I would like to express my sincere appreciation and gratitude to my dissertation director,
Professor Ravi Sandhu, who has enlightened and guided me throughout my doctoral stud-
ies. Great thanks to Dr. Sandhu who made this work possible, and encouraged me during

my difficult times.

Special appreciation and thanks to my dissertation co-director, Professor Francesco Parisi-
Presicce, who has guided me throughout my dissertation work and has been extending my

knowledge and research skills, and discussing with me with great insights.

| am also grateful to my dissertation committee members, Professor Larry Kerschberg and

Professor Kris Gaj for their valuable comments and suggestions.

My appreciation also goes to many friends at George Mason University for their help and

to my co-authors for their collaboration.

Table of Contents

Page
Abstract e X
1 Introduction e e 1
1.1 UsageControl e 1
1.2 Expressive Power and Safety Analysis 4
1.3 Problem Statement 6
1.4 Summary of Contributions 7
1.5 Organization of the Dissertation 8
2 Background e 9
2.1 OM-AMFramework e 9
2.2 UCONwpcModel 12
221 CoreModels 14
2.2.2 Attribute Management and Mutability 17
223 AnExample 18
3 Formal Model and Policy Specification 21
3.1 Temporal Logicof Actions 21
3.1.1 BuildingBlocks 21
3.1.2 Temporal Formulaand Semantics 23
3.1.3 Extensionof TLA e 24
3.2 LogicalModelof UCON 25
3.2.1 AttributesandStates 0. 26
3.22 Predicates 27
3.2.3 ACliONS e 28
3.2.4 Model and Satisfactionof Formulae 32
3.3 Specification of Authorization Core Models 34
3.3.1 TheModepreAg. e 34
3.3.2 TheModepreA; e 37

3.3.3 TheModepreAs 39

Vi

3.34 TheModepreAs. e 40
3.35 TheModebnAy 41
3.3.6 TheModebnA; 42
3.3.7 TheModebnAd, 42
3.3.8 TheModebnAs 43
3.4 Specification of Obligation CoreModels 47
3.41 ThemodebreBy 49
3.42 TheModebreBy e 50
3.43 TheModepreBs e 51
344 TheModepreBs e 51
345 TheModebnBy o i 52
3.4.6 TheModebnB; @ @ . 53
3.47 TheModebnBy e 54
3.48 TheModebnBs e 54
3.5 Specification of Condition CoreModels 56
3.6 Formal Specification of General UCONModels 57
3.6.1 SchemeRules. 58
3.6.2 Completenessand Soundness 60
3.7 Expressivityand Flexibility 63
3.7.1 Role-based Access ControlModels 63
3.7.2 ChineseWallPolicy 65
3.7.3 Dynamic SeparationofDuty 66
3.7.4 MAC Policy with High Watermark Property 67
3.7.5 Hospital Information Systems oL L. 68
3.8 RelatedWork 69
3.9 Summary e e e e e e e 71
Expressive Power e 72
4.1 Formal Modelof UCONandUCON; 72
411 UCON; . . . o e s e e e e 74
41.2 UCON;. . . o e e e e e e 82
4.2 Expressive Powerof UCON. 85
4.2.1 A UCON, Model for iTunes-like Systems. 85

422 TAMand SO-TAM 89

vii

4.2.3 Simulating SO-TAMwithUCON 92
4.3 Expressive Powerof UCON. 104
431 AnExample 105
4.3.2 ReducingUCONtoUCONg 107
4.3.3 ReducingUCONtOUCON, oo 108
4.4 DISCUSSION e e 118
45 RelatedWork e 119
4.6 SUMMAIYt e e e e e 121
5 SafetyAnalysis 122
5.1 Undecidability of Safety inUCON 122
5.2 Safety Decidable UCONModel 126
5.2.1 Safety Analysis of UCONwithout Creation 127
5.2.2 Safety Analysis of UCONwith Creation 131
5.3 Expressive Power of Decidable UCQNlodels 143
531 RBACSystems e 144
5.3.2 DRM applications with Consumable Rights 148
5.4 DISCUSSION o e e 150
55 RelatedWork 151
5.6 Summary e e e e 152
6 Conclusionsand FutureWork oo 154
6.1 Conclusions 154
6.2 Future Work 155

Bibliography e 157

List of Tables

Table

4.1 Primitive actions

4.2 Attributes in UCON for iTunes-like Systems

viii

Figure
2.1
2.2
2.3
2.4
2.5
2.6
3.1
3.2

3.3
5.1

List of Figures

Page

The OM-AM framework for security engineering 10
The OM-AM framework for RBAC systems 11
The OM-AM framework for UCONsystems 12
Usage controlmodel 13
Continuity and mutability propertiesof UCON 14
UCON,gc family of coremodels 17
State transition of a single access with usage control actions 29
Usage controlactions 30
State transitions 61
Safety check algorithm 142

Abstract

FORMAL MODEL AND ANALYSIS OF USAGE CONTROL
Xinwen Zhang, Ph.D.

George Mason University, 2006

Dissertation Director: Ravi S. Sandhu

Dissertation Co-director: Francesco Parisi-Presicce

The concept of usage control (UCON) was introduced as a unified approach to captur-
ing a number of extensions for access control models and systems. In UCON, a control de-
cision is determined by three aspects: authorizations, obligations and conditions. Attribute
mutability and decision continuity are two distinct characteristics which are presented in
UCON for the first time. In this research | develop a logical model beyond the conceptual
UCON model to capture the formal semantics of these key features, and then analyze the
expressive power and safety properties of UCON.

Although the informal study of policy specification flexibility with UCON has been
conducted in previous work, the multiple control components and unique features such as
decision continuity and attribute mutability have not been formally studied. In this dis-
sertation | develop a logical model of UCON based on an extended version of Lamport’s
temporal logical of actions (TLA) to formalize the state transitions in a single usage pro-
cess. The model consists of predicates on subject and object attributes as authorizations,
subject actions as obligations, and predicates on system attributes as conditions. With these

basic terms, a usage control policy can be specified by a set of logical formulae, which are

instantiated from a fixed set of scheme rules. The policy specification language is shown
to be sound and complete. The flexibility of policy specification with UCON is shown by
expressing policies for various applications.

To formally study the expressive power of UCON by comparing with traditional access
control models, a policy-based model is developed to formalize the overall effect of a us-
age process. With this model, | prove that the general single-object typed access matrix
(SO-TAM) model can be simulated with a UCOMNeA model, which is a sub-model of
UCON with only pre-authorizations. The study of the expressive power shows:that
is at least as expressive as the augmented typed access matrix model (ATAM). For the ex-
pressive power of UCON pre-obligation modelsdB), | prove that a general UCOM-ec A
model can be reduced topae B model, and vice versa. This demonstrates that fundamen-
tally these two models have the same expressive power. For UCON ongoing authorization
and obligation models)¢.A andon B), the system state changes non-deterministically, de-
pending on concurrent accesses and reasons for attribute updates (e.g., ended access vs.
revoked access). The study of the expressive power for these models is left for future work.
In UCON pre-condition and ongoing condition models4C' andon('), a usage control
decision is determined by some environmental restrictions dependant on system attributes.
Since UCON core models do not capture how system attributes change, it would be inap-
propriate to compare the expressive power of UCON condition models with others.

Safety is a fundamental problem of access control models. With the policy-based
model, | first show that the general UCQINe A andpre B models have undecidable safety.

With some restrictions on the general models, | propose a U@ model with de-
cidable safety. The restricted model maintains reasonable expressive power as shown by
simulating a role-based access control (RBAC) model with a specific user-role administra-
tion scheme, and a digital rights management (DRM) application with consumable rights.
The safety analysis afn A, preB, andonB is left for future work. For UCON condition

models, since how system attributes change is not captured in UCON, the safety problem

is not a valid problem because the system state changes occur by events outside the scope

of the control of UCON model.

Chapter 1: Introduction

1.1 Usage Control

Traditional access control models such as lattice-based access control (LBAC) [7, 18, 47]
and role-based access control (RBAC) [19, 50] primarily consider static authorization deci-
sions based on subjects’ pre-assigned permissions on target objects. Access matrix models
such as HRU [23] and TAM [46] use a matrix to distribute permissions at the discretion of
individual subjects. In policy-based authorization management systems [11,17, 25, 26], a
centralized reference monitor (or distributed reference monitor with centralized adminis-
tration) checks a subject’s permission when access is requested, and the request is granted
according to system security policies at the time of the access request. Once a subject is
granted a permission, there are no further security checks for continued access.
Developments in information technology, especially in electronic commerce applica-
tions, require additional features for access control. On one side, in recent information
systems, an access control decision can be determined by many aspects, such as general
subject or object attributes, or some system constraints. For example, a professor can ac-
cess the information of the students in his class only in his office and only during working
hours. Further, an access may require some actions to be fulfilled by the subject, or by
another subject instead of the requesting subject. For example, before reading an email, a
user needs to send the acknowledgement of receipt to the sender. Traditional access con-

trol models cannot capture the multiple aspects of decisions in these applications. On the
1

other side, the usage of a digital object may be not only an instantaneous access or activity,
like read and write, but also temporal and transient, such as payment-based online reading,
metered by reading time or chapters, or a downloadable music file that can only be played
10 times. In these cases, a subject’s permission may decrease, expire, or be revoked along
with the usage of the object.

As traditional identity-based and role-based access control models cannot satisfy these
purposes, UCON was recently proposed to be the next generation access control model that
extends traditional access control models in multiple aspects [39] and fits new security re-
guirements. In UCON, an access may be an instantaneous action, but may also be a process
lasting for some duration with several related and subsequent actions. Actions and events
during an access process may result in changes to the system state, such as subject or object
attributes, or in changes in the status of an access (e.g., revoke an access). Usage control
can be enforced before or during an access process, or both. A usage decision in UCON is
made by policies of authorizations, obligations, and conditions (also referred as M{cON
core models). An authorization decision of an access is determined by the subject and/or
object attributes. Obligations are actions that are required to be performed before or during
an access process. Conditions are environment restrictions that are required to be valid
before or during an access. An extreme example of UCON is the traditional access con-
trol models, in which the authorization decision is made instantly when an access request is
generated, and there is no further check after that. By considering more general subject and
object attributes, UCON is a comprehensive model to represent the underlying mechanism
of existing access control models and policies. Beyond that, by combining authorizations,

obligations, and conditions in access control decisions, UCON fundamentally extends the

traditional access control models and captures the access control requirements in DRM,
trust management, and other modern information systems.

Two distinguishing features of UCON beyond traditional access control models are the
continuity of access decision and the mutability of subject attributes and object attributes.
In UCON, authorization decisions are not only checked and made before an access, but
may be repeatedly checked during the access. A granted access may be revoked by the
system if some policies are not satisfied, according to the changes of the subject or object
attributes, or environmental conditions, or some obligations that are not fulfilled during the
accessing.

Mutability is a new concept introduced by UCON, but its features can be found in tra-
ditional access control models and policies. For example, in a Chinese Wall policy, if a
subject accesses an object in a conflict-of-interest set, then he/she cannot access any other
conflicting objects in the future. That means, the potential object list that the subject can
access has been changed as a side-effect of a previous access. This change, consequently,
restricts the future access of this subject. History-based access control policies can be ex-
pressed by UCON with this feature of attribute mutability. Also, mutability is useful to
specify dynamic constraints in access systems, such as separation of duty (SoD) policies,
cardinality constraints, etc. Another prospective area is consumable access. Consumable
access is becoming an important aspect in many applications, especially in DRM. For ex-
ample in a pay-per-use DRM application with fixed credit of a subject, the available access
time decreases with ongoing access.

Continuity and mutability in UCON introduce interactive and concurrent concepts into

access control. An access results in the update of subject or object attributes as side-effects.

These changes, in turn, may result in the change of other ongoing or future accesses by the
same subject, or to the same object, or some access that is implicitly related. That means,

an access may change not only its own state, but also the states of other accesses.

1.2 Expressive Power and Safety Analysis

The main goal of an access control model is to define and enforce security policies in a
security system. Informally, the expressive power of an access control model is the ca-
pability of expressing various policies. As a fundamental problem, expressive power has
been studied with traditional access control models since the introduction of access ma-
trix model formalized by Harrison, Russo, and Ullman (HRU) [23]. Some related work
on this aspect is summarized in Chapter 4. As UCON is claimed to fundamentally extend
traditional access control models, a natural concern is its expressive power. With general
usage-related subject and object attributes, UCON can be configured to support various
policies for different applications. Also, the features of multi-aspect decision components,
decision continuity, and attribute mutability greatly enhance its expressive power, as shown
in Chapter 3. Another approach to study the expressive power of an access control model
is to express another model by simulation, whereby the two models can be compared with
regard to their relative expressive powers. The expressive power of UCON can be studied
by simulating traditional access control models, such as access matrix models and RBAC.
A different but related and fundamental problem is the leakage of permissions in an
access control model. In an access control system, a permission is granted or an access is
authorized depending on the current state of the system. Also, the granting of a permission

may consequently change the configuration of the system, and this, in turn, may enable

other permissions. Typically, a configuration of a system consists of a set of subjects, a
set of objects, a set of rights, and a collection of assertions indicating whether a subject
can have a right on an object. An access control system also contains a set of policies or
rules to specify how the granting of a permission can change a system configuration or a
state. For example, in an access matrix model, in each system state the matrix contains
the rights that a subject has on an object, and there is a set of commands with which the
matrix can be changed. For UCON, both the permission distribution and state change are
determined by a set of policies. A policy refers to an access right that a subject can have
on an object, based on attribute predicates, obligation actions, and system conditions. In
a given system state, the permissions of a subject are evaluated by the attribute values,
obligation satisfactions, and system status. As a side-effect of granting an access, one or
more subject and/or object attributes can be changed, which result in a new system state.
This dynamic property makes it difficult to foresee a system state in which a subject may
have a particular right on a particular object. This is referred to as the safety problem in
access control models.

The requirement of strong expressive power and that of a tractable safety property have
been conflicting since the introduction of protection models in 1970’s. Itis not a surprising
fact that for a given access control model, the more expressive power it has, the harder it is,

computationally, to carry out safety analysis.

1.3 Problem Statement

Park and Sandhu [38,39,51] presented the concept of mutability and continuity, and a con-
ceptual model of UCON, which consists of several core sub-models including authoriza-
tion, obligations, and conditions. Although the flexibility of policy specification has been
informally studied in [39, 40, 60], to formally understand the concept of UCON, especially
the comprehensive consideration of usage decisions, a formal specification of the principles
of UCON and its flexible expressive capability is necessary. With a logical specification,
we provide a tool to precisely define policies for system designers and administrators. With
a conceptual and informal model, the capability to rigorously define policy is limited. Also,

a logical specification provides the precise meaning of the new features of UCON, such as
the mutability of attributes and the continuity of usage control decisions. Finally, to ana-
lyze general properties of UCON models such as expressive power and safety problem, we
need a formal model.

For an access control model, expressive power and safety analysis are two fundamental
problems. Previous work [39, 40] has informally shown the expressive power of UCON,
while a formal study on this aspect remains to be done. Generally, the expressive power
of an access control model can be evaluated by comparing it with other models, i.e., by
simulating one model with another model. In particular, as UCON is claimed to be a
flexible and comprehensive model, we need to understand its relative expressive power
with respect to traditional access control models.

The safety problem of an access control system is to determine if a subject can get a
permission on an object in some reachable state of the system. Since UCON is shown

to have strong flexibility and expressive power for policy specification, it is a reasonable

conjecture, although needs to be proven, that the safety problem of UCON is undecidable
in general. How to introduce reasonable constraints on the general model and obtain a

decidable model with practical expressive power is a fundamental problem for UCON.

1.4 Summary of Contributions

This dissertation contains the following contributions.

e A logical model of UCON is developed with TLA to formalize the state transitions
in a single usage process. With this model,
— policy specifications for core UCON models are presented; and

— a fixed set of scheme rules are defined to specify general UCON policies with

the properties of soundness and completeness; and
— policy specification flexibility of UCON is illustrated by expressing various

policies.

e Policy-based formal models of UCOM-¢cA andpreB are developed to formalize
the accumulative effect of a usage process. The expressive powerdandpreB

is studied and the following results are achieved.
— By simulating SO-TAM withpre A, preA is proved to be at least as expressive
as SO-TAM.

— Further,preA is shown to be more expressive than SO-TAM and TAM, and at

least as expressive as ATAM.

— ThepreA andpre B have the same expressive power.

e The safety property of UCON is analyzed with the policy-based model and the fol-

lowing results are achieved.

— The safety problem of the genegale A andpreB is undecidable.

— The safety problem is decidable fopae A model with finite attribute domains
and without creating policies, and the problem is polynomial in the number of

possible states of the system and NP-hard in the number policies in the scheme.

— The safety problem is decidable fopae A model with finite attribute domains
and creating policies, and the attribute creation graph is acyclic and there are no

cycles that include create-parent tuple in attribute update graph.

— The decidablepre A models maintain practically useful expressive power as
shown by specifying an RBAC model with a user-role assignment administra-

tive scheme and a DRM application with consumable rights.

1.5 Organization of the Dissertation

Chapter 2 first introduces the OM-AM framework of security engineering as the back-

ground of this dissertation, and then the conceptual UCON model and a motivating ex-
ample. In Chapter 3 a logical model is developed to formalize the state transitions in a
single usage process, and its flexibility of policy specification is presented. In Chapter 4
a policy-based formal model focusing on the overall effect of a usage is developed and
the expressive power of UCOMNeA andpreB is studied. With this policy-based model,

the safety problem of UCONreA is studied in Chapter 5. Chapter 6 summarizes this

dissertation and presents some directions for future work.

Chapter 2: Background

This chapter presents some background knowledge and work relevant to this dissertation.
The general OM-AM framework for security engineering is introduced in the context of
UCON, followed by the conceptual UCQN- model with its new features. The related
work regarding temporal characteristics, expressive power, and safety analysis of access

control models are presented in Chapter 3, 4, and 5, respectively.

2.1 OM-AM Framework

OM-AM framework is a layered approach to security system first proposed in the context
of role-based access control (RBAC) [48] systems. As shown in Figure 2.1, the four layers
are (bjectives, Mbdels, Achitectures, and Elchanisms, surrounded by a basic require-
ment of assurance which permeates all layers. The objective layer captures the informal
specifications of a system’s security requirements (policies or goals). The model layer pro-
vides the abstract or formal interpretation of the security requirements. The architecture
layer describes the security design and implementation strategy in terms of components,
servers, brokers, etc., and their relationships. The mechanism layers focuses on concrete
implementation techniques. In a high-level view, the objectives and models are concerned
with articulatingwhatthe security goals and expressions are, and what should be achieved,

while the architectures and mechanisms addnesso meet these requirements. OM-AM

10

framework is neither a top-down waterfall-style nor process-based layers (e.g., software en-
gineering process). Each layer's mapping to adjacent layers is many-to-many, e.g., a model
can be supported by multiple architectures, while an architecture can support multiple se-
curity models. At the same time, each layer deals with distinct and independent functions,

and these functions are tightly related to other layers to some degree.

What ? Objectives
Models
Architectures
How ? Mechanisms

Assurance

Figure 2.1: The OM-AM framework for security engi-

neering

For the instance of RBAC systems shown in Figure 2.2, the objective layer is pol-
icy neutral since RBAC can be configured to express various policies [37]. In the model
layer, there are many RBAC models with different features. Among them, RBAC96 [50]
is the first comprehensive and well-accepted model, and ARBAC97 is an administrative
model for RBAC systems. At the architecture layer, RBAC can be supported with server-
pull, user-pull, or hybrid architectures [48]. At the implementation layer, there are many
mechanisms that can be used, such as secure cookies [43], digital certificates [41], security
assertion markup language (SAML) [35], SSL, IPSec, X.509, etc.

This dissertation focuses on the model layer of UCON. To some extent, the objective

11

What ? Policy neutral

RBAC96 model, ARBAC97, etc

Sever-pull, user-pull, federated, etc

Secure cookies,

?
How * digital certificates, SAML, etc.

RBAC System

Assurance

Figure 2.2: The OM-AM framework for RBAC sys-

tems

and architecture layers are also involved. As shown in Figure 2.3, at the objective layer,
as UCON model is attribute-based, general subject and object attributes can be defined to
support various security policies for different application requirements. This makes UCON
policy neutral. In the model layer, the conceptual UC@N model has been previously
proposed [39] and a formal model is presented in this dissertation. Decision components
such as authorizations, obligations, and conditions are integrated in a single model, and
can be configured to express traditional access control models and various security policies
such as separation of duty, Chinese Wall, etc. [39,59]. In the architecture layer, traditional
server-side reference monitor (SRM) or emerging client-side reference monitor (CRM) or
combination of them can be used to support a UCON system [42]. For the implementation
mechanism, existing DRM technologies, such digital watermarking, can be used in some
applications. At the same time, emerging trusted computing (TC) [1-3] technologies pro-
vide mechanisms to support client-side reference monitors to enforce UCON policies [52].

For client-side policy enforcement, remote attestation for platforms and content viewers is

12

needed. Trusted computing technologies with the support of public key infrastructure (PKI)
can be the concrete mechanisms for implementation. A UCON policy can be specified by
XML with some standard approaches such as extensible access control markup language
(XACML) [36] for security policies and extensible rights markup language (XrML) [58]

for DRM policies.

What ? Policy neutral

UCON model

ABC

Server-side RM,
client-side RM, etc

DRM technologies,
attribute certificates, trustec computing,
XrML, XACML, etc.

Usage Control System

How ?

Assurance

Figure 2.3: The OM-AM framework for UCON sys-

tems

2.2 UCONABC Model

As depicted in Figure 2.4, a usage control system has six components: subjects and their
attributes, objects and their attributes, rights, authorizations, obligations, and conditions.
The authorizations, obligations and conditions are components of usage control decisions.
An authorization decision is based on the subject’s and/or object’s attributes. Obligations
are activities that have to be performed by a subject before or during an access. Conditions
are system environment restrictions which are required before or during an access.

The most important properties that distinguish UCON from traditional access control

13

Rights
(R)
Objects
Usage (0)
Decisions

Subject Attributes (SA) Object Attributes (OA)

Authoriz
ations

QY

Figure 2.4: Usage control model

models and trust management systems are the continuity of usage decisions and the mu-
tability of attributes. Continuity means that a usage control decision can be determined
and enforced not only before an access, but also during the ongoing period of the access.
Figure 2.5 shows a complete usage process consisting of three phases along the time line:
before usage, ongoing usage, and after usage. Usage control decisions can be checked and

enforced in the first two phases, named pre-decisions and ongoing-decisions, resplectively

In the after usage phase, no decisions are checked and enforced since there is no access control after a
subject finishes usage on an object. There can be obligations and conditions defined in this phase, which are
called post-obligations and post-conditions, respectively. Since UCON is defined as a session-based access
control model targeting the current access request and ongoing usage, post-obligations and post-conditions
are not included in the core UCON model, but should be included in related administrative models. In this
work we only focus on the core aspects of UCON, while an administrative model should be developed in the

future.

14

Mutability means that subject and/or object attributes can be updated as the results of
granting or performing an access. Along with the three phases, there are three kinds of
updates: pre-updates, ongoing-updates, and post-updates. All these updates are performed
and monitored by the system. The update of a subject or an object attribute during an access
may result in a system action to allow or revoke current access or another access, according
to the authorizations of the access. An update on the current usage may generate cascading
updates, while an update in another access can act as an external event that would cause a
change of the usage status, such as revocation. These are unique features of UCON models
because of attribute mutability and decision continuity.

Continuity of

Decisions
pre-decision ongoing-decisions o
before usage ongoing usage after usage
pre-updates ongoing-updates post-updates
Mutability of
Attributes

Figure 2.5: Continuity and mutability properties of UCON

2.2.1 Core Models

For each decision component (authorizations, obligations, and conditions) in UCON, sev-
eral core models are defined based on the phase where usage control is checked and updates
are performed. For example, in authorization core models, the usage control decisions are

dependent on the subject and object attributes, which can be checked and determined in the

15

first two phases of an access. Based on the possible updates in all three phases, eight core

authorization models can be defined as follows.

e preAy: a usage control decision is determined by authorizations before the usage,

and there is no attribute update before, during, or after this usage.

e preA;: a usage control decision is determined by authorizations before the usage,

and one or more subject or object attributes are updated before this usage.

e preA,: a usage control decision is determined by authorizations before the usage,

and one or more subject or object attributes are updated during this usage.

e preAs. a usage control decision is determined by authorizations before the usage,

and one or more subject or object attributes are updated after this usage.

e onAy: usage control is checked and the decision is determined by authorizations

during the usage, and there is no attribute update before, during, or after this usage.

e onA;: usage control is checked and the decision is determined by authorizations
during the usage, and one or more subject or object attributes are updated before this

usage.

e onA,. usage control is checked and the decision is determined by authorizations
during the usage, and one or more subject or object attributes are updated during this

usage.

e onAs: usage control is checked and the decision is determined by authorizations
during the usage, and one or more subject or object attributes are updated after this

usage.

16

For ongoing authorization core models, continuous decision checks capture not only
the attribute changes from the local ongoing usage process, but also other related usage
processes. For example, a subject attribute change due to the system administrator’s action
may revoke an ongoing access to an object if any of the authorization predicates of this
access is no longer valid.

Similar obligation and condition core models can be defined. A real model is typically
a combination of multiple core models. Figure 2.6(a) shows all possible combination of
core models and their relationships, where the UGONCONg, and UCON; are the
three base models at the bottom. Any two of them can be combined to form a new model,
and all together form the UCONc model. Each of the A, B, and C models is divided
into several cases as shown in Figure 2.6(b), (c), and (d), respectively. In each of them,
the mutable cases of pre-update model (1), ongoing update model (2), and post-update
model (3) dominate the immutable model (0), while there is no ordering among the mutable

cases

2In [38, 39], thepreAs, preBs, and all mutable condition core modejs-¢C,, preCs, preCs, onCy,
onCy, andonCj3) are not included in the UCON core models. BoeA,; andpreBs, the reason was that
since a decision is made before the usage, ongoing updates can be postponed to the after-usage phase in a
usage process. As in a system there may exist concurrent usage processes, ongoing updates of an usage can
affect other usages. Therefore these two core models are included here. For mutable condition core models,
subject and/or object attributes can also be updated, such as usage time and usage log. Similarly, an update in
a usage process of condition core models can affect other usage processes. Therefore, the mutable condition

core models are also included in this work.

17

UCON ;5
preA,; preA, preA, OnA,; onA, ONnA,
(pre-update) (on-update) (post-update) (pre- update) (on- update) (post- update)
e ro W W
UCON, UCON, UCON, preA, onA,
Authorizations Oblications Conditions (immutable) (immutable)
@ (b)

T OHBI\OIVBZ()HBa prewczprecs Oml\onczVOni

preB, onB, preC, onC,
(©) (d)

Figure 2.6: UCONg family of core models

2.2.2 Attribute Management and Mutability

A usage control model includes several underlying assumptions. In UCON, a usage deci-
sion is request-based, i.e., rights are not pre-assigned to subjects and permissions are com-
puted at the time of usage requests. Authorization decisions are based on subject attributes
and object attributes according to the usage control policies. Also, depending on the usage
control policies, these attributes may have to be updated and their management is a key
concern in usage control. Attribute management can be either “administrator-controlled”
or “system-controlled”.

Administrator-controlled attributes can be modified only by explicit administrative ac-
tions. These attributes are modified at the administrator’s discretion but are “immutable”
in that the system does not modify them automatically, unlike mutable attributes. Here the

administrator can be either a security officer or a user, although in general, administrative

18

actions are made by security officers. Administrator-controlled attributes are typical in tra-
ditional access control policies such as mandatory access control (MAC) and RBAC. Static
separation of duty and user-role assignment in RBAC are other examples of this case.
Unlike administrator-controlled, in system-controlled attribute management, updates
are the side effects or results of the user’s usage on objects. For instance, a subject’s credit
balance is decreased by the value of the usage on an object at the time of the usage. This
is different from the update by an administrative action because the update in this case is
done by the system while in administrator-controlled management the update involves ad-
ministrative decisions and actions. This is why system-controlled attributes are “mutable”
attributes that do not require any administrative action for updates. Attribute mutability
is considered as part of UCON core models. In this dissertation our concern lies in the
system-controlled mutability issue, where updates are made as side effects of users’ actions
on objects. Five types of access control policies with system-controlled attribute mutability
are summarized in [40], including exclusiveness, accounting, immediate access revocation,

obligations, and dynamic confinements.

2.2.3 An Example

In this section, an example motivating the new features of UCON is presented. Traditional
access control models and policies have difficulties, or lack the flexibility to specify policies
in these scenarios.

Consider a DRM application with a limited number of simultaneous usages, where an
objecto can only be accessed and simultaneously used by a maximum of 10 users at a

time. Each new access request must be granted and there is only one access generated

19

from a single user at any time. If the number of users accessing the object is 10, then
one existing user's ongoing access is revoked when a new request is generated. There

are different possible policies to determine which user’'s ongoing access must be revoked.

Among them,
(a) revocation by start time: the longest usage is revoked.
(b) revocation by idle time: the usage with the longest idle time is revoked.

(c) revocation by total usage time: the usage with the longest accumulating usage time

is revoked.

For these three different polici@swe need to define different attributes for subjects and

objects, respectively.

(a) For each subject, we define the starting time as an attribute. The list of accessing sub-
jects is defined as an object attribute, and each time a new access request is generated,
this attribute is updated by adding the requesting subject. In UCON terminology, this
is a pre-update. If the total accessing number is already 10, then the ongoing subject
with the earliest start time is revoked, and the new access is permitted. When an
access is ended by a subject or revoked by the system, the subject is removed from

the object’s accessing list. This is called a post-update.

(b) An object has the same attribute as in (a). Each subject has two attributes: the status
of the subject with a valuéusy or idle, and the continuous idle time in a single

usage process. In order to monitor the idle time, the system has to check the status

3These policies require specification of a tie-breaking rule which we ignore for the sake of simplicity.

20

and update the idle time during the entire ongoing access by means of ongoing-
update. Similar to (a), there are pre-update, revoking access, and post-update actions.
Revocation is performed with respect to the longest idle access when the total count

of ongoing accessing subjects is larger than 10.

(c) Here again an object has the same attribute as in (a). Each subject has an attribute of
accumulating usage time to record the total usage time of this subject on this object
over the subject and object life. Similar to (a) and (b), there are pre-update, revoking
access, and post-update actions. Revocation is performed with respect to the subject
with the longest usage time access when the total count of ongoing accessing subjects
is larger than 10. In addition, there is a post-update of subject attribute after the usage
(either ended by a subject or revoked by the system) by adding this usage time to the

subject’s historically accumulating accessing time.

In this example, an access is a process that interacts not only with a subject and an
object, but also with the system and other related processes which are accessing or trying
to access the same object concurrently. An access decision is no longer a single function
of (subject, object, right), but depends on the attributes of the entities (subject and object)
involved in the access, and may change the attributes of these entities. On the other side,
an access is not a simple action, but consists of a sequence of actions and events not only
from a subject, but also from the system. This example also shows that a real system is the

combination of several core models.

Chapter 3: Formal Model and Policy Specification

This chapter first reviews TLA and then defines some extensions to include past temporal
operators. A logical model is developed to formalize the state transitions in a single usage
process with this extended TLA. Policy specifications for UCON core models are pre-

sented. A set of scheme rules are proposed to specify general UCON policies and shown
to have the properties of soundness and completeness. The flexibility of the policy specifi-

cation language is illustrated at the end of this chapter.

3.1 Temporal Logic of Actions

Extending temporal logic [33] by introducing boolean valued actions, the temporal logic
of actions (TLA) [30] is a powerful tool to specify systems and their properties, especially
for interactive and concurrent systems. This section gives a brief introduction to the basic
terms and the syntax of temporal formulae, and then introduce some additional temporal

operators along with their semantics.

3.1.1 Building Blocks

Variables, values, and states are basic concepts in TLA. Values are elements of a data type.
A variable has a name like andy, and can be assigned a value. We assume that there is

an infinite set of available variables with nameg), etc., to which values can be assigned.

21

22

A constant is a variable that is assigned with a fixed value. A st&echaracterized by
assignment of a valug|z] to each variable:.

A function is a non-boolean expression built from variables, operator symbols, and
constants, such a8 + y — 3. The semanticg/f] of a function f is a mapping from
states to values. For example? + y — 3] is the mapping that assigns to the statibe
values[z]? + s[y] — 3, wheres[z] ands[y] denote the values thatassigns tar andy,

respectively. Generally,

slfl = f(v'o': s[o]/v)

wheref(V'v': s[v]/v) is the value obtained by substitutinfp] for each variable in the
expression.

A predicate is a boolean expression built from variables, operator symbols, and con-
stants, such as = y + 1. The semantic$P] of a predicate” is a mapping from states to
boolean values. A statesatisfies a predicate iff s[P], the value off P] in s, equalsrue.

An action is a boolean-valued expression formed from variables, primed variables, op-
erator symbols, and constants, suchras- y + 1 andz’ — 1 ¢ 4. Formally, an action
represents a relation between old states and new states, where unprimed variables refer to
the old state and the primed variables refer to the new state. Formally, an dctsoa
function assigning a booleaifA]t to a pair of statess, ¢). For exampleg’ = y + 1 has
the boolean value dffz] = s[y] + 1. We say thats, ¢) is anA step if s|A]t equalstrue.

Generally:
s[A]t = A(Y'v': s[v] /v, t[v] /v")

Since a predicaté’ is a boolean expression built from variables and constants, it is

23

regarded as a special action without primed variables. A(pat) is a P step iff s[P] is

true.

3.1.2 Temporal Formula and Semantics

The basic temporal operatorfis(“Always”). The semantics of a temporal action is defined
using the concept dbehavior A behaviors in TLA is an infinite sequence of states
< sy, S1, S, ... > (@ finite set of states can be regarded as infinite with identical repeating

states). With this idea, the semantics of an atomic formula with actions is defined as:

< 80,851,892, ... > [[A]] = SOI[A]]Sl

< Sg, 81,52, ... > [OA] =Vn > 0: s,[A]snt1

The same semantics can be defined for predicates since a predicate is a special form of
action.

In TLA, a formula is built from predicates and actions with logical connectors and
temporal operators. Recursively, a temporal formula is defined by the following grammar

in BNF:

< formula >:=< predicate > | < action > |- < formula > |
< formula > N\ < formula > | < formula >V < formula > |

< formula >—< formula > |0 < formula > |

A formula is an assertion about a behavior. The semantic vglfé of a formular is

a boolean value on a behavieor Formally,

< 80, S1, 89, ... > [F] = so[F]s1

< 80,81, 82, ... > [OF] =VYn > 0:< Sy, Snt1, Snta, - > [F]

24

3.1.3 Extension of TLA

Other future operators, such ‘d@ventually” ($), can be defined using the “Always’j
operator. The relationship between the “Always” and the “Eventually” operators can be

expressed as:
<>F = -0-F

Based on the semantics of temporal actions and formulae, we can define other temporal

operators and semantics similarly.

The “Next” and “Until” Temporal Operator
For a behaviok sg, s1, s9, ... >, the semantics of thidextoperator () is defined as
< S0, 51,82, ... > [[OF]] = 81[[F]]82

Until (/) is a binary operator. A formulaUG is true if F'is alwaystrue until G is

true along the sequence of states. Formally,
< 80,51, 82,... > [FUG] =3 > 0: (5;[G]sip1 A (0 < j <i — 8;[F]sj41))

Note that the semantics dfi/G has no requirement o for s; and £’ for s; and the
following states, which is different from the “until” in the English language.

There is an equivalence between these temporal operators:

OF = (FV ~F)UF

Past Temporal Operators

TLA only defines future temporal operators likéand . In traditional temporal logic

there are past temporal operators to specify the properties during the past time compared

25

to the current time. For a behavier s, s1, s2,... > Iin TLA, if we considers, as the
state at the current time, then, s,, ... are states of the future on the time line. We use the
state sequence, s_», s_; for states during the past time along this time line. Therefore, a

behavior is a state sequence:
< ..,8.9,58_.1,80, 51,52, ... >

We can now define past temporal operators similar to the future dlig$ias-always-

beer), ¢ (Once, © (Previoug, S (Sincg. Formally,

< ey 8_9,8.1,80, 81,82, ... > [BF] =VYn < 0: s,[F]sn1
< ey 8_2,8.1,80, 51,52, ... > [#F] =3In <0: s,[F]sni1
< ey S_2, 8.1, 80, 1, S2, ... > [OF] = s_1[F]so

< ey S_2,8-1, 80, S1, S2, ... > [FSG] =

3 <0: (Si[[G]]Si—i-l A (Z < j <0— SjI[F]]sj—l—l))

Similar to the future operators, there are some equivalences among these past operators,

such as
QF =-m-F

$F = FS(FV —F)

3.2 Logical Model of UCON

In this section we present a logical approach for formalizing UCON. First we describe the
basic components such as predicates and actions, then we define the logic model of UCON

with these components.

26

3.2.1 Attributes and States

A system state is a set of assignments of values to variables. In UCON, there are three
different kinds of variables: subject attributes, object attributes, and system attributes.

In UCON each entity (subject or object) is specified by a finite set of attributes. We
require that each entity has at least one attribute for identity, called name, which is unique
and cannot be changed. An attribute of an entity is denotedhiagtt whereent is the
subject or object’s identity andtt is the attribute name. Hereafter, we assume that an
entity name without any attribute specified denotes its identity.

An attribute is a variable of a specific datatype, which includes a set of possible values
(domain) and operators to manipulate them. In any state of the system, all attributes of an
entity are assigned values from their corresponding domains. The datatype of an attribute
depends on what kind of attribute it is, such as group membership, role, security clearance,
credit amount, etc. The assignment of a value to an attribute is denoted.byt = value.

System attributes are variables that are not related to a subject or an object directly,
such as system clock, location, etc. We define a special system attribute to specify the
usage status of a single access prodess,). Specifically, the functiorstate(s, o,r)
is a mapping from{(s, o, r)} to {initial, requesting, denied, accessing, revoked, end}.

The semantics of th&itial state is that the acceés o, r) has not been generated, while
requesting means the access has been generated and is waiting for the system’s usage
decision;denied means that the system has denied the access request according to the
usage control policies before usageressing means that the system has permitted the
access and the subject has been accessing the object immediately after that. An access goes

to therevoked state when it is revoked by the system during the ongoing usage phase, or it

27

goes to arend state when a subject finishes the usage.

In UCON, a function is an expression built from one or more attributes and constants.
Formally, a function is a mapping from a set of attribute values to a new value. For instance,
in the example in Section 2.2.3, the total number of ongoing accessing subjects for an object
is a function of the object’s attribute (a list of accessing subjects).

The variables for the attributes (including subjects, objects, and the system), the func-
tions, and the constants comprise the basic terms of our logical model in UCON. A state of
a UCON system is an assignment of values to all subject attributes, object attributes, and

system attributes.

3.2.2 Predicates

A predicate is a boolean expression built from variables, functions, and constants, where
variables includes subject attributes, object attributes, and system attributes. The seman-
tics of a predicate is a mapping from system states to boolean values. A state satisfies a
predicate if the attribute values assigned in this state satisfy the predicate. For example,
the predicates.credit > $100 is true if s's credit attribute value in the current state of

the system is larger than $100. Since a system may have very different predicates from an-
other system, the set of predicates for a general UCON model is not fixed. As examples, a
unary predicate is built from one attribute variable and constantsseugrdit > $100.00,
o.classification = ‘supersecure’. A binary predicate is built from two different at-
tribute variables, e.g.dominate(s.cleareance, o.classification), s.credit > o.value,

(s,7) € o.acl, whereo.acl is objecto’s access control list. Note that the two attributes

in a binary predicate can be from a single subject or object, or one subject and one object,

28

or from the system. A predicate can be defined with a number of attributes from a single

entity, or two entities, or the system.

3.2.3 Actions

There are two types of actions in UCON: usage control actions and obligation actions.

Usage Control Actions

Usage control actions include actions to update attribute values and actions to change the
status of a single access procegsde(s, o,7)).

An update action changes the system state to a new state by updating the value of an
attribute. Note that only subject and object attributes can be updated in UCON. How system
attributes change is outside the scope of UCON model.

Corresponding to the point where an update is performed, there are three kinds of up-
date actions defined in UCONreupdate, onupdate, and postupdate. We distinguish
these three types based on the phase where these actions are performed by the system: be-
fore usage, during usage, and after usage, respectively. Essentially, each of these actions
updates an attribute value to a new value. In a real UCON system, an update action can
have an arbitrary name specified by the system or policy designer. Also, a UCON model
can have multiple updates in each phase for different attributes.

If the system performs an update successfully, the attribute value is changed to a new
value, and the action igue, otherwise, it isfalse. Note that in our model we do not
consider the time delay of an action, and we assume that an action is always performed

instantly causing the transition to the next state

In a real system, an update may be delayed or failed, or an update is performed but the target object is

29

preupdate

permitaccess
requesting

denyaccess

denied

preupdate postupdate

onupdate postupdate

revokeaccess

Figure 3.1: State transition of a single access with usage control

actions

Another type of usage control action is performed by a subject or the system that change
the status of an accegs o, 7). As mentioned before, there are six different possible values
of state(s, 0, r) during an access life cycle. The transition from a state to another state is
a usage control action, as shown in Figure 3.1. Note this figure only shows the changes of
the usage statusate(s, o, 7) in one usage process.

We can categorize all usage control actions into two classes: actions performed by a
subject and actions performed by the system. Figure 3.2 shows these actions during the life

cycle of a usage process. They are briefly explained below.
1. tryaccess(s,o,r): generates a new access reqyest, r), performed by subject

2. permitaccess(s, o,r): grants the access request afo, r), performed by the system.

not available, e.g., because of network problem or storage problem. Therefore there needs to be logging and
recovering mechanisms to monitor the process. As standard approaches can be used for these purposes, the

model does not capture these aspects for the sake of simplicity.

30

Subject Actions

tryaccess endaccess

Y

before usage ongoing usage after usage

e

denyaccess preupdate postupdate
permitaccess onupdate* revokeaccess

System Actions

Figure 3.2: Usage control actions

. denyaccess(s,o,r): rejects the access request efo, r), performed by the system.
. revokeaccess(s, o,1): revokes an ongoing accesso, r), performed by the system.
. endaccess(s,o,r): ends an access, o, r), performed by subject

. preupdate(attribute): updates a subject or an object attribute before granting access

or after denying an access, performed by the system.

. onupdate(attribute): updates a subject or an object attribute during the usage phase,

performed by the system.

. postupdate(attribute): updates a subject or an object attribute after access, per-

formed by the system.

For a usage process, there can be multipleupdates, onupdate, and postupdate

actions for different attributes before, during, and after the access, respectively. Also, in

the ongoing usage phase there may be continual or periadigatiate actions for a single

attribute, as the star symbol indicates in Figure 3.2.

31

Obligation Actions

In UCON an obligation is an action that must be performed by a subject before or during an
access. For an accesso, r), an obligation is an action described diy s, 0,), whereob is

the obligation action name, arglando, are the obligation subject and object, respectively.
Note thats, and o, may be the same asando, or different, depending on particular
applications. For example, the downloading of a music file may require the requesting

subject to click a privacy button. The obligation is defined as
click_privacy(s, privacy_statement)

where the obligation subject is the same as the accessing subjegt;iandy_statement

is the obligation object. As another example, a child’s watching an online movie may
need one of the parents’ agreement in advance, where the obligation subject (parent) is
different from the accessing subject. To identity what kind of obligations are required for

a usage process, predicates can be defined based on the attributes of the requesting subject
(s), the target objectd), the obligation subjectsf), and the obligation objecif). For
example, if a parents’ obligation (e.g., clicking a statement) is needed before a child can
watch online movies, then a predicate can be defined to specify the relationship between
the access requesting subject (the child) and the obligation subject (the parent), and the

obligation action for access, o, watch) can be defined as

(s.parent = sp) A click(sy, statement)

Note that in an obligation action, predicates are not used for control decisions, but
for identifying what obligations are required. That is, an obligation action can always be

performed whenever required, so that an obligation is not dependent on other permissions.

32

3.2.4 Model and Satisfaction of Formulae

With the predicates and actions that have been introduced, we can define a logical model

of UCON.

Definition 1. A logical model of UCON is a 5-tupleM = (S, P4, Pc, A4, As), where

e Sis a set of sequences of system states,

e P, is afinite set of authorization predicates built from the attributes of subjects and

objects,

e P, is afinite set of condition predicates built from the system attributes,

e A, is afinite set of usage control actions,

e Ay is afinite set of obligation actions.

A state is a set of assignments of values to attributes, that is, a function on the set of
subjects and their attributes, the set of objects and their attributes, and the set of system
attributes. The setl 4 includes update actions and the actions changing the status of an
accesss,o,r).

A preassumption of our logical model is that all predicates and actions are computable,
e.g., a predicate is a computable function of attribute values. In practice they would need
to be efficiently computable.

A logical formula is built from predicates and actions with logic connectors and tem-

poral operators.

Definition 2. A logical formula in UCON is defined by the following grammar in BNF:

33

0 == alp[(=0)[(0 A 0)|(¢6 — 0)[0e|O0| O o|olto|Mo|#g| © 0|6S0|

whereq is an actionp is a predicate.

If in a state sequencey of a model M, a states satisfies a formulas, we write

M, sq,s E ¢. The satisfaction relatior is defined by induction on the structure of

and only fors, € sq. Specifically,

10.

11.

12.

13.

. M, sq, so E piff so[p], wherep € P4 U Pe.

. M, sq, so E aliff sgfa)si, wherea € A4 U Ag, ands; is the next state of, in sq.
. M, sq,s9 E—giff M, sq,sgF o.

. M, sq, 50 E 01 Ao iff M, sq, sq F 01 andM, sq, sg E 0.

. M, sq, 80 F 01 — 09 iff M, sq, so ¥ 01 0r M, sq, sg E 0.

.M, sq,s0 EOeiff Vn > 0: M, sq, s, FE 0.

.M, sq,s0 EQoliff In > 0: M, sq, s, F o.

. M, sq,s0 E Qo iff M, sq,s1 E o.

.M, sq,50 F 01Uy iff 3P >0: M, sq, s, Fda A (0<j<i— M,sq,s;F o)

M, sq,so FBgiff Vn <0: M,sq,s, Fo.
M, sq,so F $oiff In <0: M,sq,s, Fo.
M, sq, so E Ogiff M, sq,s_1 F ¢.

M78Q750':@18@2iﬁ E|Z'<OIM,SQ,Sit:@2/\(Z'<jSO—)M’SQ,thgl)

34

3.3 Specification of Authorization Core Models

For each decision componentin UCON, several core models are defined based on the phase
where updates are performed. This section presents the policy specifications of UCON
authorization core models. Obligation and condition models are illustrated in the next two
sections.

In authorization core models, usage control decisions are dependent on the subject and
object attributes, which can be checked and determined in the first two phases of an access.
Based on the possible updates in all three phases, eight core authorization models can be

defined as shown in Section 2.2.1.

3.3.1 The ModelpreAy

As presented in [39, 51], most traditional access control models can be exprepsed as
model, in which an authorization decision is determined by the system before the access

happens, and there is no update for subject or object attributes. The usage control policy is:
1. permitaccess(s,o0,r) — O(tryaccess(s, 0,7) AN (p1 A ... A pz))

wherep,, ..., p; are predicates built from subject and/or object attributes, which are pre-
authorization predicates. Thermitaccess action grants the permission toand starts
the access. This policy states thapamitaccess action implies that the authorization
predicates must be true “before” the current system state. Note that iy, there are no
attribute updates before thermitaccess action.

There are several assumptions made in the policy specification for this and all other core
models in this chapter. First, a UCON policy is referred as a set of logical formulae for a

single usage process, o,), that is, we focus on the specification of system state changes

35

during a single usage process of a core model, while the interactions between concurrent
usage processes are not captured by our policy specifications. Also in this chapter, we
assume that before an access request is generated, the requesting subject and the target
object exist in the system, i.e., creating and destroying subjects and objects are not specified
in our logical model.

Another assumption is that the time line is bounded during the life time of a single
usage process. That is, thejaccess is always the first action in a single usage process,
all past temporal operators do not refer to any state before-tlaecess in the local usage
process, and all future operators do not refer to any state after themextess of the
same subject to the same object.

Negated predicates are not required explicitly, since we can always define a new pred-
icate equivalent to a negated one. A disjunctive form of authorization predicates can also
be specified by having one policy for each component, so that for an access permission
(s,0,7), a system may have multiple policies for it. In a single usage process, at least one
of them is satisfied by the model.

All authorization policies in UCON are defined for positive permissions (to enable per-
missions). For an access request, if there is no policy to enable the permission according
to the attribute values, then the access is denied by default. This is sometimes called the
closed system assumption, whereby no policy is specified to deny an access in a system.
The same holds for obligation and condition core models.

The policy defined above states that the authorization predicates are checked when an
access requested is generated, and there is no other check befarethi&iccess action.

An alternative approach is to check the authorization predicates just before an access is

36

granted, as the following formula states.
permitaccess(s,o,r) — #tryaccess(s,o,r) A (p1 A=+ Ap;)

In this formula, the predicates are required to be true just in the statefithétaccess
action, ignoring how attributes can change aftertthgiccess action and before this state.

Another alternative policy more restrictive than the above two policies is:
permitaccess(s,o,r) — #tryaccess(s, o, T)/\((pl/\' --Ap;)Spermitaccess(s, o, 7“)),

which states that the authorization predicates must be true fromsjhecess action to the
permitaccess action. We use the original one as qute A, policy specification as it is

the least restrictive one, and satisfiesiiaimum requiremerdf apre Ao model. Another
reason is that, in there A; model (in next subsection), attribute updates are defined after
tryaccess action and beforgermitaccess action, and after these updates, the authoriza-
tion predicates may not be true imeA;, so the authorization check is performed when

the access requested is generatedpAsl; dominateyre A in the family of UCON core
models, we use the same approachpfarA,.

Example 1 In mandatory access control (MAC), each subject is assigned a security clear-
ance, and each object is assigned a security classification. Both clearance and classification
are labels in a lattice structure. A subject’s clearance and an object’s classification are com-
pared to enforce security policies, such as the simple property and the star property. If the
security clearance and classification are defined as attributes of subjects and objects, re-
spectively, MAC as in Bell-LaPadula can be expressed in UCON withptwal, policies

as shown below.

1. permitaccess(s, o, read) —

¢ (tryaccess(s, o, read) A dominate(s.clearance, o.classi fication))

37

2. permitaccess(s, o, write) —
¢ (tryaccess(s, o,write) A dominate(o.classification, s.cleamnce))
wheredominate is a binary predicate on a subject’s clearance and an object’s classification,
anddominate(x,y) is true iff z is a higher level label in the lattice thagn O
Example 2 Discretionary access control (DAC) model with access control list (ACL) can
be expressed withare Ay policy. A subject attribute is its identity, and an object attribute
is an access control lisicl of pairs(id,), whereid is a subject’s identity, andis a right

with which this subject can access this object.
1. permitaccess(s,0,r) — #(tryaccess(s,o,7) A ((s.id,r) € o.acl)) O
Besides MAC and DAC, many other examplegof A, policies can be similarly spec-

ified. Section 3.7 shows some of them.

3.3.2 The ModelpreA;

In preA;, an authorization decision is checked before an access, and there are one or more
update actions before the system grants the permission to the subject. The usage control

policy is:
1. permitaccess(s,o,1) — Q(tryaccess(s, 0,7) N\ (p1 A ... A pi))
2. permitaccess(s,o,r) — #preupdate(attribute)

whereattribute is either a subject or an object attribute. The first rule is the same as in
preAy. The second rule says that whepeamitaccess occurs, there is greupdate action

that occurred before it. For multiple updates on different attributes, this rule is:

permitaccess(s,o,r) — #preupdate; (attribute;) N $preupdates(attributes) A . ..

38

For simplicity we only include one update action in all core models. Also, without loss
of generality, we assume that in each logical formula there is at most one update for an
attribute, as multiple updates on the same attribute have the same effect as the last one.

The two rules in this policy can be specified in a single rule as the following shows.

permitaccess(s, o,r) —

¢ (tryaccess(s,0,r) A (p1 A ... Ap;)) A preupdate(attribute)

According to the assumption mentioned in Section 3.3.1, the time line is bounded dur-
ing the local usage process, so in this policy the “Once” operator does not refer to any past
state beforéryaccess in a single usage process. ThereforeinA,, thepreupdate action
is performed after theryaccess, the authorization predicates are required tore before
thepreupdate, and there is no constraint after the update action.

Example 3 In a DRM pay-per-use application, a subject has a numerical valued attribute
of credit, and an object has a numerical valued attributerdi.c. A read access can

be approved when a subject'sedit is more than an object'salue. Before the access
can start, an update to the subjeet'sdit is performed by the system by subtracting the

object’'svalue. The policy is:

1. permitaccess(Alice, ebookl, read) — Q(tryaccess(Alice, ebookl, read) N

(Alice.credit > ebookl.value)) A #preupdate(Alice.credit)

preupdate(Alice.credit) : Alice.credit’ = Alice.credit — ebook1.value

This rule specifies that whenever Alice’s credit is more than the value of ebookl, she can
get the reading permission, and the granting of the permission to Alice implies an update of
her credit. Therreupdate results in a new value of Alice’s credit by subtracting ebookl’s

value from the original credit. O

39

3.3.3 The ModelpreA,

In preA,, an authorization decision is checked and enforced before an access, and there
are one or more update actions during the usage process. Although these updates cannot
change the decision regarding the current ongoing usage, they may affect other ongoing or

subsequent accesses from this subject or to this object. The poligydds is:
1. permitaccess(s,o0,r) — O(tryaccess(s, 0,7) AN (p1 Ao A pl))
2. permitaccess(s,0,r) — ¢ (onupdate(attribute) A Qendaccess(s,0,1))

Thefirstrule is the same as thafire Ay. The second rule states that there is an ongoing
update before thendaccess action and after th@ermitaccess action. In case when an

update is necessary in each state during the ongoing-usage phase, this rule is expressed as
permitaccess(s,o0,r) — onupdate(attribute) U endaccess(s, o, 1)

This rule states that after thermitaccess action, the attribute is updated in each
state “until” the endaccess action. Since aermitaccess action changes the value of
state(s, 0, 1) t0 accessing, andendaccess changes it tand, this policy is equivalent to

the following.
D((state(s, 0,T) = accessing) — onupdate(attribute))

In preAs,, since the authorization check is performed before the access, there is no
revocation during the usage process in this and other pre-authorization models.

For a more general case when the ongoing update of an attribute is only needed when
particular predicates are true, (e.g., a subject’s idle time is updated only when the access

status igidle), the policy is:

40

O((state(s, 0,7) = accessing) A py1 - -+ A py; — onupdate(attribute))

wherep,1, ..., p,; are predicates that trigger the update action when they are satisfied.

3.3.4 The ModelpreAs

In preAs, an authorization decision is checked before the access, and there are one or more

update actions after the usage process. The usage control policy is:
1. permitaccess(s,o0,r) — Q(tryaccess(s, 0,7) N (p1 A ... /\pi))
2. endaccess(s,0,r) — Qpostupdate(attribute)

The first rule is the same asjimeA,. The second rule says thapastupdate action must
be performed by the system after an access is ended by a subject. Simitardtg no
authorization is enforced after granting the access, so there is no revocation in this model.
Example 4 In a DRM membership-based application, a reades attributeszpense and
readingGroup, and a book has attributeseadingGroup andreadingCost. A subject

can read any book in his/her own reading group. The policy is:

1. permitaccess(s, o, read) —

¢ (tryaccess(s, o, read)A (s.readingGroup = o.readingGroup))

2. endaccess(s, o, read) — Qpostupdate(s.expense)

postupdate(s.expense) : s.expense’ = s.expense + o.readingCost

In this example, the authorization policy states that if bothnd o belong to the same
reading groups can read the book and his/her expense is updated by adding the cost of

this book after the access. O

41

3.3.5 The Modelon A

In the pre-authorization models, there is no security check after a system grants a permis-
sion. InonA,, authorizations are enforced during an access period. The usage control

policy is given below.
1. O(=(p1 A ... Ap;) A (state(s, 0,7) = accessing) — revokeaccess(s, o,r))

In this model, ongoing authorization predicates, (.., p;) have to be satisfied in any state
during the access period (after the acti@mmitaccess), otherwise the access is revoked
by the system immediately.

This policy can also be specified as the following formula Witintil” operator.

permitaccess(s,o0,r) —

(p1 A ... Api) U (revokeaccess(s,0,1) V endaccess(s, 0,T))

which indicates that if a usage is permitted, the authorization predicates are true until this

usage process is revoked by the system or ended by the subject. Sineedheiccess

action changestate(s, o,r) from accessing to revoked, andendaccess action changes

state(s, o, 1) from accessing to end, this formula is equivalent to the original one. Simi-

larly we can use both approaches in other ongoing models (in this and next two sections).
Since we are specifying the core aspects of UCON, pre-authorization rules are not in-

cluded in ongoing-authorization models, and for simplicity thguccess action implied

by thepermitaccess action is ignored. The same holds for other ongoing core models. In

practice, an application may require a combination of several core models. We discuss this

in Section 3.6.

42

Example 5 In an organization, a user Bob (with raleiployee) has a temporary position to
conduct a short-term project with a certificatetefp_cert. While Bob is accessing some
sensitive information, his digital certificatéefnp_cert) for this project is being checked
repeatedly. If his certificate (number) is in the Certification Revocation List (CRL) of the
organization, his temporary role membership is revoked and he cannot access the informa-

tion any more. The policy is:

1. O(=((Bob.role = employee) A (Bob.temp_cert ¢ CRL)) A (state(Bob,o,r) =

accessing) — revokeaccess(Bob, o,1)) O

3.3.6 The ModelonA;

In on A1, the authorization decision is enforced during the usage process, and there are one

or more update actions before a subject starts to access an object. The control policy is:
1. permitaccess(s,o0,r) — #tryaccess(s,o,r) N #preupdate(attribute)
2. O(=(p1 A ... Ap;) A (state(s, 0,1) = accessing) — revokeaccess(s, 0,1))

The first rule implies a pre-update action beforeghenitaccess action, which is similar

to preA;. But unlike inpreA;, the pre-decision based on authorization predicates is ig-
nored in this rule since there is no authorization check before a subject starts to access an
objectinonA;.

3.3.7 The Modelon A,

In onA,, there are one or more update actions during a usage period. The control policy is:

1. O(=(p1 A ... Ap;) A (state(s,o0,1) = accessing) — revokeaccess(s, o0,1))

43

2. permitaccess(s,o,r) —

O (onupdate(attribute) A O(endaccess(s, 0,r) V revokeaccess(s, 0,1)))

Again, in the second rule, we only specify that there is only one update action during the
ongoing-usage phase. In applications where an update is required in every ongoing state,

the third rule is changed to:

permitaccess(s,o0,r) —

onupdate(attribute) U (endaccess(s, 0,7) V revokeaccess(s, 0,1))
Similar topreAs, this rule can be specified as:

O((state(s, 0,r) = accessing) — onupdate(attribute))
or, more generally,

O((state(s, 0,7) = accessing) A py1 - -+ A pu; — onupdate(attribute))

wherep,, . .., p,; are predicates that require the update when they are satisfied.

3.3.8 The ModelonA;

In on A3, update action is required after a usage process. The control policy is:
1. O(=(p1 A ... Ap;) A (state(s,o0,1) = accessing) — revokeaccess(s, o,r))
2. endaccess(s,0,r) — Qpostupdate(attribute)
3. revokeaccess(s,o0,1) — Opostupdate(attribute)

In many applications, the update after an access ended by a subject, is different from the

one after an access is revoked by the system, as shown in the second and third rules. Here

44

we simply use the same action namepoftupdate, but they may change an attribute to

different values, or update different attributes. For example, an ended access may update
the total usage time of the subject, while a revoked access may update another attribute to
record the time and reason of this revocation for auditing purposes. If the updates are the

same for two cases, these two rules can be combined as in
endaccess(s,0,1) V revokeaccess(s, o,r) — Opostupdate(attribute)

Example 6 Consider the usage control policies for the example in Section 2.2.3. In this
example, an object attribute is a set of accessing suhjeeaissingS = {s|state(s,o0,r) =
accessing . We also define the systefivck as a system attribute. For the different policies

we define different subject attributes.

(a) Revocation by the earliest start time
We define the starting timesfartTime) as a subject attribute. The usage control

policy can be specified as a combinatiorvafd; andon A; as follows.

1. permitaccess(s,o0,r) —
dtryaccess(s,o,r) \@preupdate(o.accessingS) A\ #preupdate(s.startTime)
preupdate(o.accessingS) : o.accessingS’ = o.accessingS U {s}

preupdate(s.startTime) : s.startTime’ = sys.clock
2. O(—(Jo.accessingS| < 10) A (state(s, 0,7) = accessing) A (s.startTime =
M ingaririme(0.accessingS)) — revokeaccess(s, o, 7’))

3. endaccess(s,0,r) V revokeaccess(s,o0,r) — Opostupdate(o.accessingS) N

Opostupdate(s.startTime)

(b)

45

postUpdate(o.accessingS) : o.accessingS’ = o.accessingS — {s}

postUpdate(s.startTime) : s.startTime’ = null

where|o.accessingS| is the number of accessing subjects with objgeend
Mingaririme(0.accessingS) is the earliest start time fromrcessingS. The firstrule

is aonA; rule specifying that whenever a subject tries to access the object, there must
be two pre-updates before the subject starts to access, one updatingngS by

adding this requesting subject, and another updatisigrtTime by assigning the
current system clock. The second rule says that when the total number of access-
ing users is larger than 10, and the subjest&-tTime is the earliest one, its ac-

cess is revoked. The third rule specifies two post-updates needed when the access is
ended or is revoked, one updatiagessingS by removing the subject, and another
one updatings.startTime by assigning the valueull, which means the subject is

not involved in an access. The post-updates are the same foetdthcess and

revokeaccess actions in this system.

Revocation by the longest idle time
We define two subject attributes: the status of the usages with valuebusy or
1dle) and the accumulative idle time in a single usage peried{ime). The usage

control policy is a combination afn A, on Ay, andon A; as follows.

1. permitaccess(s,o,r) —
dtryaccess(s,o,r) N $preupdate(o.accessingS) N $preupdate(s.idleTime)
preupdate(o.accessingS) : o.accessingS’ = o.accessingS U {s}

preupdate(s.idleTime) : s.idleTime’ = 0

46

2. O(—(Jo.accessingS| < 10) A (state(s,0,7) = accessing) A (s.idleTime =

M az;gerime(0.accessingS)) — revokeaccess(s, o, 7“))

3. O((state(s,0,7) = accessing)\(s.status = idle) — onupdate(s.idleTime))

onupdate(s.idleTime) : s.idleTime’ = s.idleTime + 1

4. endaccess(s,o0,1) V revokeaccess(s, 0,r) — Opostupdate(o.accessingsS)

postupdate(o.accessingS) : o.accessingS’ = o.accessingS — {s}

whereM az;gerime (0.accessingS) is the largestdleT'ime in the object'siccessingS
attribute. Rules (1) and (4) are similar to (1) and (3) in (a), respectively, except that
in rule (1), one pre-update action is to initialize the subjegtisTime. In rule (2),

the revocation is determined by tkédleTime. Rule (3) specifies the mutability of

the subject attribute by saying that there must be a continuous updatélef ime

performed by the system whenever the status of the subjédtis

(c) Revocation by the longest total usage time
We define the accumulating usage timegeTime as a subject attribute. The con-

trol policy is a combination ofnA; andon As as follows.

1. permitaccess(s,o,r) —
$tryaccess(s,o,1) N #preupdate(o.accessings)
preupdate(o.accessingS) : o.accessingS’ = o.accessingS U {s}

2. O(—(Jo.accessingS| < 10) A (state(s, 0,r) = accessing) A (s.usageTime =
M azysagerime(0.accessingS)) — revokeaccess(s, o, r))

3. endaccess(s,0,r) V revokeaccess(s,0,r) —

Opostupdate(s.usageTime) N Qpostupdate(o.accesingsS)

47

postupdate(o.accesingS) : o.accessingS’ = o.accessingS — {s}

postupdate(s.usageTime) : s.usageTimes = s.usageTlime + sys.periodT

whereM azysqgerime (0.accessingS) is the largestsageT'ime in accessingS. Rule

(1) is the same as in the previous case except that there is only one pre-update action;
rule (2) specifies that the revocation is determined by the total usage time of the
subject. Rule (3) says that after each usage, there must be an updateyehime

by adding this usage time to the old value. Heye.periodT is a system attribute

to record this accessing’s period. A system attribute may be defined and updated
repeatedly along a usage process to record a single access’s period. While the update
of system attributes is not included in UCON core models, for simplicity we just use
an attribute to conceptually illustrate the post-update action. Note that the revocation
is determined by a subject’s historically accumulating total usage time before this
ongoing access. The time of an ongoing access is not considerechipdie ime

attribute of a subject. O

3.4 Specification of Obligation Core Models

Obligations and conditions are two important components in the usage decision of UCON,

besides authorizations. In this section we discuss the logical approach to obligations. The

specification of conditions is discussed in the next section.

Because of the continuity of a usage decision, there are two types of obligations in

UCON.

1. pre-obligations: obligations that must have been performed before a subject starts to

access an object.

48

2. ongoing-obligations: obligations that must be performed during a usage process.

Obligations that have to be performed after an access, since they only affect the future
usage process, are considered as global obligations [39,51]. For example, an action of a
user clicking an agreement button before playing a music file is regarded as an obligation,
while the payment action of a monthly billing is a global obligation, because this action
does not affect the current usage access. In UCON an administration model is needed to
capture global obligations. In this work, we only focus on the session-based usage control
model, in which only obligations before and during the usage process are considered. The
global obligations will be described in our future work.

Similar to authorization core models, we distinguish different obligation core models

based on the phase where updates are performed as shown below.

preBy: a usage control decision is determined by obligations before the access, and

there is no attribute update before, during, or after the usage.

e preB;: a usage control decision is determined by obligations before the access, and

one or more subject or object attributes are updated before the usage.

e preB,: a usage control decision is determined by obligations before the access, and

one or more subject or object attributes are updated during the usage.

e preB3: a usage control decision is determined by obligations before the access, and

one or more subject or object attributes are updated after the usage.

e onBy: usage control is checked and the decision is determined by obligations during

the access, and there is no attribute update before, during, or after the usage.

49

e onBj: usage control is checked and the decision is determined by obligations during

the access, and one or more subject or object attributes are updated before the usage.

e onB;: usage control is checked and the decision is determined by obligations during

the access, and one or more subject or object attributes are updated during the usage.

e onBs;: usage control is checked and the decision is determined by obligations during

the access, and one or more subject or object attributes are updated after the usage.

In ongoing obligation core models, obligation actions may be required continually (i.e.,
in each ongoing state of the system), like the satisfaction of predicates in ongoing autho-
rization models. Ongoing obligation actions may also be needed periodically, or in any
state when some conditions are satisfied, e.g., when an event happens. For example, a user
has to click an advertisement at 30 minute intervals or every 20 web pages accessed. For
these purposes, attribute predicates can be defined to specify the conditions when obligation

actions are needed.

3.4.1 The modebreB,
Similar to the modebre Ay, the policy ofpreB is:
1. permitaccess(s,o0,r) — #tryaccess(s,o,r) N\ (4#0by A §oby A --- A §ob;),

whereob,, ..., ob; are obligation actions for access, o,r). This rule requires that an
access can be granted only after all the obligations are satisfied. The difference between
preBy andpreA, is that, inpreB,, all the obligations are satisfied before an access re-

guested is granted, and generally may not be performed in the same state, so that the “Once”

50

operator is applied for each of them in the policy formula.ptaA,, instead, the autho-
rization predicates are checked in a single state. As mentioned in Section 3.3.2, the “Once”
operator does not refer to any state beforetthaccess action in a single access process.
This indicates that all obligation actions are for the current access request.

Note that here we just ignore the authorization factors (attribute predicates), since we
are focusing on the obligation core model.
Example 7In an online electronic marketing system, in order to place an order, a customer
has to click a button to agree to the order policies. We define an agtignagreement
as an obligation for each order, where the obligation subject is the same as the ordering

subject, and thegree_statement is the obligation object. The usage control policy is:

1. permitaccess(s, o, order) —

$tryaccess(s,o,order) N\ click_agreement(s, agree_statement) a

3.4.2 The ModelpreB;

In preB;, usage control is decided by obligations before the access, and there must be

update(s) before the access. SimilapteA,, the policy is:

1. permitaccess(s,o0,r) — #tryaccess(s,o,r) N\ (4#0by A §oby A --- A ob;) A

$preupdate(attribute)

This rule is similar to that ipre B, except that an update action must be performed
after tryaccess and beforepremitaccess, as the “Once” operator does not refer to any

state before théryaccesss action in a single usage process.

51

3.4.3 The ModelpreB,

Similar to preAs,, in preB, the usage control decision is checked before an access and

update action(s) can be performed during the access. The policy is:
1. permitaccess(s,o,r) — #tryaccess(s,o0,7) A (#0by A #0by A\ -+ N\ $0ob;)
2. permitaccess(s,0,r) — & (onupdate(attribute) A Qendaccess(s,0,1))

For the case where an update is required in every state during the ongoing usage phase,

the second rule becomes:
permitaccess(s, o0,1) — onupdate(attribute) U endaccess(s,o,r)
or
O((state(s, 0,r) = accessing) — onupdate(attribute))
or, more generally,
D((state(s, 0,1) = accessing) A pu1 - - - A\ Pyj — onupdate(attribute))

wherep,, . .., p,; are predicates that require the update when they are satisfied.

3.4.4 The ModelpreBs

Similar topre As, in pre Bs the obligations are checked before the access, and there are one

or more update actions after the usage process. The usage control policy is:
1. permitaccess(s,o0,r) — #tryaccess(s,o,r) N (4#0by A\ 4oby A -+ N §ob;)

2. endaccess(s,0,r) — Qpostupdate(attribute)

52

The first rule is the same as thosepire B,. The second rule says thapastupdate
action must be performed by the system after an access is ended by a subject. Since the
control policy is not enforced after granting the access, there is no revocation in this and
other pre-obligation models.
Example 8 In the Example in Section 3.4.1, a customer'ger List is updated by adding
the ordered item after he/she places an order. This can be expressegweith; golicy as

the following.

1. permitaccess(s, o, order) —

$tryaccess(s, o, order) N $click_agreement(s, agree_statement)

2. endaccess(s, o, order) — Qpostupdate(s.order List)

postupdate(s.orderList) : s.orderList' = s.orderList U {o} O

3.4.5 The ModelonB,
In on By, the usage control policy is enforced during an access period. The policy is:

1. O(=(A; i A -+ A pi; — 0by)) A (state(s, 0,1) = accessing) —

revokeaccess(s, o, 7"))

In this policy, ob; is an obligation action required in an ongoing state of the system
when predicatep;s, . .., pi,, defined on subject and/or object attributes, are true. Similar
to on Ay, the policy specifies that after thermitaccess, either all the obligations are
satisfied when the subjectdscessing the object, or the access is revoked immediately.

When obligations are required in every ongoing state, this policy is:

O(=(A;(true — ob;))A(state(s, 0,7) = accessing) — revokeaccess(s,o,r))

53

or
O(—(A; 0bi) A (state(s, 0,7) = accessing) — revokeaccess(s,0,1))

Example 9 In order to use an online provider service, an advertisement banner must be
opened on the client’s side, or the service is disconnected. This can be expressed in the

onBy, model as follows.
1. D(ﬂopen,ad(s, ad_banner)A(state(s,o0,r) = accessing) — revokeaccess(s, o, 7’))
In this policy,open_ad is an obligation action on the obligation objeet banner, that
must be true during the whole accessing process. O

3.4.6 The ModelonB;

In on By, there are one or more update actions before a subject starts to access an object.
The policy is:
1. O(=(A\;(pir A+ A pa, — 0b;)) A (state(s, 0, 1) = accessing) —

revokeaccess(s, o,r))
2. permitaccess(s,o,r) — #tryaccess(s,o,r) N $preupdate(attribute)

The first rule is the same as imBj, while the second rule specifies that there is an
update action before accessing the object. Since there is ho usage control check before a
subject starts to access an object, the second rule does not imply any obligation before the

permitaccess action.

54

3.4.7 The ModelonB,

In onB,, there are one or more update actions during an access process. The policy is:

1. O(=(A;i(pir A+ Apaw, — 0by)) A (state(s, 0,r) = accessing) —

revokeaccess(s, o, 7‘))

2. permitaccess(s,o,r) — O(onupdate(attribute) A Qendaccess(s, o, r))

Similar to preBs,, for the cases where an update is required in every state during the

ongoing access, the second rule becomes
permitaccess(s, o0,r) — onupdate(attribute) U endaccess(s,o0,r)
or
O((state(s, 0,r) = accessing) — onupdate(attribute))
or, more generally,
D((state(s, 0,1) = accessing) A pu1 - - - A Pyj — onupdate(attribute))

wherep,, . .., p,; are predicates that require the update when they are satisfied.

3.4.8 The ModelonBs

In on Bs, there must be update action(s) after a usage process. The control policy is:

1. O(=(A;i(pir A+ Apaw, — 0by)) A (state(s, 0,r) = accessing) —

revokeaccess(s, o, 7“))

2. endaccess(s,0,r) — Qpostupdate(attribute)

55

3. revokeaccess(s,0,r) — Opostupdate(attribute)

Similar toon A3, the post-update after an access is ended by a subject may be different from
the one after an access is revoked by the system, as shown by different rules.

Example 10 In an online accessing application, a user needs to click an advertisement
every 30 minutes. A subject attributésageTime is the ongoing usage time in a single
session. The policy can be specified as a combination polioy Bf, onB,, andonB; as

follows.

1. O(=((s.UsageTime mod 30 = 0) — click_ad(s, ad_banner)) A (state(s,o,r) =

accessing) — revokeaccess(s, 0,1))

2. permitaccess(s,o,r) — #preupdate(s.UsageTime)

preupdate(s.UsageTime) : s.UsageTime =0

3. O((state(s, 0,7) = accessing) — onupdate(s.UsageTime))

onupdate(s.UsagtTime) : s.UsageTime’ = s.UsageTime + 1

4. endaccess(s,0,r) V revokeaccess(s,0,r) — Qpostupdate(s.UsageTime)

postupdate(s.UsageTime) : s.UsageTime’ =0

In this policy, theclick_ad is an ongoing obligation action that must be performed when

the UsageTime is a multiple number of 30. Hergreupdate andpostupdate actions are
needed to reset this attribute when the subject starts and ends (or be revoked by the system)
the access, respectively. An ongoing update is used to record the accumulative usage time.

Here we simplify this update by the incrementl&fageTime in each ongoing state. O

56

3.5 Specification of Condition Core Models

Conditions are environmental restrictions that have to be valid before or during a usage pro-
cess. Formally, a condition is a state predicate built from system attribute(s). For example,
a subject obtains a permission only when the system clock is in daytime, or in a particular
period during daytime.

Based on the point when a condition for a usage is checked, there are two types of

conditions:
1. pre-conditions: conditions that must be true before an access.

2. ongoing-conditions: conditions that must be true during the process of accessing an

object.

Similar to the authorization and obligation core models, a set of core conditions models
can be defined, by replacing the authorization predicates or obligation actions with system
attributes in decision rules. For simplicity only theeCy andonC,, core models are illus-
trated here. Note that in a condition core model, while the system attributes determine a
usage decision, the system attribute changes are not captured in the model. As in autho-
rization and obligation core models, all updates in a condition core model are performed
on subject and/or object attributes.

The policy for the modepreC) is expressed by:
1. permitaccess(s,o,1) — Q(tryaccess(s, 0,7) A\ (pcy A ... A pci))

wherepcy, ..., pc; are condition predicates built from system attributes. This policy is very

similar to that ofpre Ay andpre By, except that the decision is determined by predicates of

57

system attributes, instead of the subject’s and object’s attributesify,, and obligation
actions inpreBy.

The policy ofonCj is:
1. O(=(pci A ... A pe;) A (state(s, 0,1) = accessing) — revokeaccess(s,0,1))

This policy is similar to that obn A, andon B, except for the condition predicates.
Example 11 Suppose that a day-shift user (with releyshifter) can access an object
only during daytime. We define the local timerrentT as a system attribute, denoting an
environment status, not an attribute of any subject or object. This is a combined model of

preAy, preCy, andonCy. The policy can be expressed as the following:

1. permitaccess(s,o0,r) —

¢ (tryaccess(s,0,r) A (s.role = dayshi fter) A (8am < currentT < 5pm))

2. O(—(8am < currentT < 5pm) A (state(s, 0,r) = accessing) —
revokeaccess(s, o0, 1)) O
The first rule specifies the pre-authorization and pre-condition built from the subject’s

role name and the system time. The second rule specifies the ongoing condition built from

the system time.

3.6 Formal Specification of General UCON Models

After specifying the core models in UCON, we study the formal semantics of a general
UCON model in this section. Specifically, we show that a general UCON policy can be

expressed with a set of logical formulae instantiated from a fixed set of scheme rules, and a

58

set of logical formulae instantiated from these rules can be satisfied by at least one UCON
model. These two properties are regarded as the completeness and soundness of our policy

specification language.

3.6.1 Scheme Rules

In general, a usage control decision is determined by authorizations, obligations, and con-
ditions. As shown in the core models in previous sections, authorizations are specified by
predicates on subject and object attributes, obligations by subject actions, and conditions
by predicates on system attributes. Therefore a general usage decision is a combination of
these components.

For an acces§s, o,7), letpay, . .., pa; be a set of authorization predicates,, . . ., ob;
be a set of obligation actions, apd;, . .., pc; be a set of condition predicates. According
to the specifications of the core models explained in previous sections, a UCON policy can
be specified by two kinds of logical rules: a usage control decision rule and an update rule.
The following control rules (CRs) are specified for the pre-decision and ongoing decision

of a single usage process, respectively.

CR1: permitaccess(s,o,r) —

¢ (tryaccess(s,0,r) A (N, pan,) N (A, PCny)) A (A, #0bn;)

CR2: O(=((A,, pan.) A (N, b A== A pni, . — 0bi)) A (A, DEn,)) A

(state(s, 0,r) = accessing) — revokeaccess(s,0,1))

wherel < n; <i,1 <n; <j,1 < n <k, andpb,,, ... ,pbnjjknj are predicates to

determine when the ongoing obligatiob,, is required.

59

An access request can be granted if its pre-decision components are true; while an
ongoing access can be continued if all ongoing decision components are true. For an access,
its pre-decision and ongoing decision components may or may not be the same.

The three types of update actions can be specified as the following update rules (URS).
URL: permitaccess(s,o,r) — 4preupdate(attribute)

UR2: permitaccess(s,o,r) — O (ondupate(attribute) A

O(endaccess(s, 0,1) V revokeaccess(s, 0,1)))
UR3: O((state(s,o,r) = accessing) — onupdate(attribute))

URA4: D((state(s, 0,1) = accessing) A pui A ... Duj — onupdate(attribute))
UR5: endaccess(s,o0,1) — Qpostupdate(attribute)
URG: revokeaccess(s,o,r) — Qpostupdate(attribute)

whereU R1 is for pre-updatesl/ R2, U R3, andU R4 are for ongoing updates, aidR5
andU R6 are for post-updates. Hepg, . . ., p,; are predicates that trigger an update when
satisfied during an access. For simplicity, we only include a single attribute in each update.
Different rules can update the same attribute, or more generally different attributes. Also,
a rule can update multiple attributes as we have explained in previous sections.

Both the control rules and update rules presented herechiemaof real logical for-
mulae in a UCON policy. A rule in a real system is an instantiations of one of these rules.
A policy in the core models in previous sections can be specified by an instance formula of

a control rule and an instantiated formula of an update rule. In general, a UCON policy can

60

be a combination of multiple core models, which are specified by a set of the control rules

and update rules.

3.6.2 Completeness and Soundness

The fixed set of scheme rules have the properties of completeness and soundness for UCON
policy specification. Specifically, a UCON policy consists of a set of logical formulae, but

at most one of them is instantiated from a scheme rule. For example, there is at most
one formula instantiated fro@R1, as any two of them can be combined into one with
conjunctive authorization predicates, obligation actions, and condition predicates from both
of them. On the other hand, for a set of logical formulae, each instantiated from a unique

scheme rule, there is at least one model that can satisfy them.

Theorem 1. (Completeness) Any UCON policy can be specified by a non-empty set of
control rules and a set of update rules, each of which is instantiated from a unique scheme

rule.

Proof. This is trivially true by definition, as from the construction of the control rules
and update rules, we kno@R1 and C' R2 are not in conflict since they imply control
decisions in different phases in a single usage process. The same holds for the update
rules. Furthermore, the set of control rules specifies all possible decisions in a single usage
process, and the set of update rules specify all possible updates in a single usage process.
Therefore a general UCON policy can be specified by a non-empty set of control rules and
a set of update rules. O

By completeness we mean that a general UCON model introduced in Section 2.2.1 and

conceptually defined in [38, 39] can be formally defined with our logical model. That is,

61

the set of scheme rules is adequate to specify policies for all UCON core models and any

combination of them.

Theorem 2. (Soundness) For a non-empty set of control rules and a set of update rules,
each of which is instantiated from a unique scheme rule, there is at least one UCON model

in which the system state transitions satisfy these rules.

Proof. We construct a UCON model to satisfy eight logical formulae for a single access

(s,0,7), one for a uniqgue scheme rule. Consider the two control r184’ and C'R2',

which are instantiations af' R1 andC' R2, respectively, and six update ruldsR1’, ...,

U R6', one for each unigue scheme update rule, respectively. Without loss of generality, we
assume that all the attributes in these update rules are different, since, as we have mentioned
in Section 3.3, multiple updates on the same attribute can be reduced to a single update.
Consider a system where a state is specified by the attributes (subject’s, object’s, and the
system’s) in all of the rules. Initially the system statesjs andstate(s, 0,r) = initial.

The state transitions are constructed with the following steps and illustrated in Figure 3.3.

e tryaccess

denyaccess

onupdates

‘URQ' UR3', UR4) : :endaccess . pO(SLtJUR")g'?IeI .e

revokeaccess

preupd:a\te permitaccess

— >

postupdate
(UR6")

Figure 3.3: State transitions

e In s, the subject generates an access requésidccess) to o with rightr, the value

62

of state(s, o, r) is changed teequesting, and the system’s new statesis The other

attributes have the same values asjn

With the subject and object attributes and system attributes ifiany of the pred-
icates specified i’ R1’ is not satisfied, or at least one obligation actiongiR1’
is not performed, then the system state changes via the aktiofccess(s, o, r) to

S, Wherestate(s, o,1r) = denied.

In sq, if all the predicates i’ R1’ are satisfied, and all the obligations are performed
by the corresponding subjects defined(i1’, the update action iV R1’ is per-

formed, and the system state changes;to

In s3 the permitaccess(s,o,r) action is performed by the system and the system

state changes to,, wherestate(s, o,7) = accessing.

If any predicate or obligation action includeddn??2’ is not satisfied irs,, the access

is revoked, and system state changes;favherestate(s, o, 1) = revoked.
In s5, the update action ity R6’ is performed, and the system state changeg.to

If all the predicates and obligation actions included’i2’ are satisfied irs,, the
update actions i/ R2' and U R3’ are performed by the system i. If all the
predicates inJ R4’ are satisfied irs4, perform the update action i R4’ and the

system state changes4a

In s; the subjects ends the access and the system state changes tehere the

system attributetate(s, o,r) = end.

The update action itV R5' is performed insg, and the system state changesd4o

63

With simple model checking, we can verify that all the rules are satisfied in these state
transitions. That is, this model satisfies the set of logical formula. Therefore, any set of

control rules and update rules can be satisfied by at least one UCON model. O

3.7 EXxpressivity and Flexibility

UCON is the first model to bring authorization, obligation, and condition together into
access control. Both mutability and continuity are rarely discussed in traditional access
control models and applications. In this section we apply the proposed logical specification

language to show how to express policies in various applications.

3.7.1 Role-based Access Control Models

In RBAC [50], arole is a collection of permissions, and a permission is a pair (object, right)
implying the right to the object. A role can be assigned to a user by an administrator or
a security officer. A user can be assigned to a set of roles. In a session, a user activates
a subset of his roles and obtains all the permissions associated with these activated roles.
Roles may be organized in a partial order hierarchy, in which high-level roles (senior roles)
inherit the permissions assigned to low-level roles (junior roles). RBAC can be expressed
as pre-authorization models in UCON, in which user-role assignments can be regarded as
subject attributes, permission-role assignments can be regarded as object attributes, and the
partial order relation between roles in role hierarchy is expressed by attribute predicates.
Example 12 Consider an RBAC1 model [50] where all rolésare in a partial order
hierarchy with respect to domination relation A subject (a user in RBAC1) has an

attributeact Role with value a subset ok, the activated roles in a session. An object has

64

an attributeper Role with value a set of pairérole, r) wherer is a right. A permission
(0,r) is assigned to aole iff (role,r) € o.perRole. The predicatepa,(role, o) is true if
there existsole’ such thatrole > role’ and(role’,r) € o.per Role.

The usage control policy for RBACL1 is expressed by:
1. permitaccess(s,o,r) — O(tryaccess(s, 0,7)A(role € s.actRole) Arpa,(role, 0))

This is a basigre Ay policy specifying that ifrole is in the subject’'sict Role attribute
andrpa,(role, o) is true, then the subject can be granted access to the object with the right
T O

RBAC with constraints can also be expressed with a UCON model. There are many
types of constraints that can be defined in RBAC, such as mutually exclusive roles, car-
dinality, prerequisite roles, etc. [50]. With appropriate attributes defined for subjects and
objects, we can specify RBAC models with constraints using UCON.

Example 13 Consider an RBAC2 model with an exclusive constraint, wheie; can

be activated by a user only ibles is not activated in the same session. Each object has
the same attributes defined in the previous example. For each subject, besides the attribute
actRole, the attributensgRole = {roley,roles,. .., role,} denotes explicit user-role as-

signments. We can express this model in UC@WNA, as follows:

1. permitaccess(s,0,r) — #(tryaccess(s,o,7)A (roley € s.asgRole) A (role; ¢
s.actRole) A (roles ¢ s.actRole) A rpa,(roley, o)) A #preupdate(s.act Role)

preupdate(s.actRole) : s.actRole’ = s.actRole U {role, }

This rule specifies that the permissigno,) can be granted ifole; is in the subject’s

asgRole but not inact Role (i.e.,role; is assigned te but not activated);pa,.(role;, o) is

65

true, and-oles is not in the value of the attribute:t Role of the subject. Th@ermitaccess
action implies a pre-update action of the subjeet’sRole attribute by addingole; to it.

|

3.7.2 Chinese Wall Policy

The original Chinese Wall policy [15] prevents information flow between companies in
conflict of interest. More generally, if a subject accesses an object in a conflict-of-interest
set, then this subject cannot access any other object in this set in the future. We define an
attribute to store the usage history of a subject: each time this subject generates an access
request to an object, this attribute is checked and the authorization decision is determined
by the history. In the meantime this attribute is updated to record this access information if
the access request is approved. We show the policy with the following example.

Example 14 Consider a system with a set of conflict object classes {c, ca, ..., ¢, }.

An object attribute-lass indicates which class it belongs to. A subject attribute is defined
asac = {cs,,Cs,, ..., Cs,, }, Wheresy, ... s, are integers from 1 te, to record the classes

that a subject has accessed. Another subject attribute=s{o;, 0, . .., o}, which stores

the objects that the subject has accessed. If a subject has accessed an object, the Chinese

Wall policy is:
1. permitaccess(s,0,read) — #(tryaccess(s,o,read) A (o € s.a0))
For an access request for an object not in the subject’the policy is:

1. permitaccess(s,o,read) — #(tryaccess(s,o,read)A (0o & s.a0) A (o.class ¢

s.ac)) A $preupdate(s.ac) N #preupdate(s.ao)

66

preupdate(s.ac) : s.ac = s.acU {o.class}

preupdate(s.ao) : s.a0’ = s.ao U {o}

The first one is are A, policy, which specifies that when a subject wants to access an
object accessed before, the access request is approved and there is no update. The second
one is apreA; policy because of the update of the subject’s attributes. Specifically, if an
object’s conflict set is not in a subjectig list, this subject can access this object, and both
ac andao must be updated before the access. Note that in this system there are two policies
for the permissionis, o, read). In a real access period, only one of them is satisfied, as we

mentioned in Section 3.3.1. O

3.7.3 Dynamic Separation of Duty

Dynamic separation of duty (DSoD) is a basic access control policy in many security sys-
tems. The concept of mutability for exclusiveness [40] is presented to capture the attribute
mutability property in DSoD. Specifically, an object attribute is defined to store the history
of the subjects accessing this object. Here we present a simple example of object-based
DSoD from [54].

Example 15 In a check issuing system, a check is prepared by a subject iicdherole

and issued by a subject in th@pervisor role. A subject may have both derk role

and asupervisor role at the same time, but a subject is not allowed to issue a check that
is prepared by himself. For each object, the two attribpteparer andissuer store the
subjects that prepare and issue this object, respectively. Initially the valpespai-cr and

1ssuer are bothnull (not available). Each subject has two attributed: (subject identity)

androle. A predicate> is defined to specify the dominance relation between two roles.

67

The policies foprepare andissue are specified as follows, respectively.
1. permitaccess(s, o, prepare) — Q(tryaccess(s,o,prepare) A (s.role > clerk) A

(o.preparer = null)) A #preupdate(o.preparer)

preupdate(o.preparer) : o.preparer’ = s.sid

2. permitaccess(s,o,issue) —
¢ (tryaccess(s, o, issue)As.role > supervisor)A(o.preparer # null)A(o.issuer =
null) A (o.preparer # s.sid)) A $preupdate(o.issuer)

preupdate(o.issuer) : o.issuer’ = s.sid

Both policies arereA; ones. The first one says that a subject with a role dominating
can prepare a check, and this chegl’sparer attribute is set to the subject’s identity. The
second one specifies that a subject with a role dominatipgrvisor can issue a check

only if this subject is not the one who prepares this check. O

3.7.4 MAC Policy with High Watermark Property

In traditional MAC, a subject’s clearance is assigned by a system administrator, and cannot
be changed unless the administrator assigns a new label to it. This can be expressed with
a UCONpreA, model as shown in Section 3.3. With the high watermark property, the
security clearance can be updated as a result of the user’s access actions, and this update
has to follow some predefined policies. We show this property in MACyas 4, model.

Example 16 SupposeL is a lattice of security labels with relation. A subject has

two attributes,clearance to represent the current label, antixzClear to represent the
maximum clearance label. An object has one attribtitessi fication. All these attributes

have as value domain the lattiée The authorization policy foread is:

68

1. permitaccess(s,o,read) — Q(tryaccess(s, o,read) \
(s.maxClear > o.classification)) N #preupdate(s.clearance)

preupdate(s.clearance) : s.clearance’ = LU B(s.clearance, o.classi fication)

whereLU B is a function that returns the least upper bound of two labels. O

3.7.5 Hospital Information Systems

In this section we show some examples of hospital information systems that require not
only authorizations, but also obligations and conditions.

Example 17 Suppose that a doctos)(can perform () a particular operatior§ only if he

has operated more than 3 times befofEhis can be expressed agraA, model. The total
times of the operations that a doctor has performed is stored as the subject attrjbute

The policy is:

1. permitaccess(s, o, per form) —
¢ (tryaccess(s, o, per form)A(s.role = doctor)\(s.exp > 3)) Apreupdate(s.exp)

preupdate(s.exp) : s.exp’ = s.exp + 1 O

Example 18 In this example, a doctor can perform an operation on a patient only if the
patient agrees to it on a consent form. This agreement is an obligation to be completed

before the operation, where the patient is the obligation subject, and the consent is the

2The examples in this section just show applications of our logical specification language, but do not
provide a complete system specification. In this example, some other attribute predicates or conditions may
enable a doctor to perform an operation at the beginning (when< 3), e.g., in the presence of senior

doctors, which are not included here.

69

obligation object. This model can be expressed by a combinatiomeof, and preB,.

The policy is:

1. permitaccess(s, o, operate) —

¢ (tryaccess(s, o, operate) A (s.role = doctor) A #ob_agree(o, consent))

The pre-decision components of this policy are a conjunction of an authorization pred-
icate and an obligation, both of which must be satisfied before the access can start.
Example 19 In this example, a junior doctor can perform an operation only when there is a
senior doctor monitoring the operation. An ongoing obligationrole = senior_doctor)A
ob_monitor(sy, s2) is defined where, is the obligation subject ang is the obligation ob-

ject. This model is a combination pfeA, andon Bj.

1. permitaccess(s, o, operate) —

¢ (tryaccess(s, o, operate) A (s.role = junior_doctor))

2. O(=((s1.role = senior_doctor) A ob_monitor(sy,s)) A (state(s,o, operate) =

accessing) — revokeaccess(s, o, operate)) g

3.8 Related Work

Bertino et al. [8-10] introduce a temporal authorization model for database management
systems. In this model, a subject has permissions on an object during some time intervals,
or a subject’s permission is temporally dependent on an authorization rule. For example,
a subject can access a file only for one week. Our authorization model is different: we

consider the temporal characteristics in a single usage period, with mutable attributes of

subject and object before, during and after an access, that is, the temporal properties are

70

the result of the mutability of subject and object attributes, which change due to the side-
effects of accesses and usages. In contrast, Bertino et al.'s model focuses on the validity of
authorization policies with time period, and the temporal property of a policy is not related
to an access action, but dependent on the system administration policies. Gal et al. [20]
propose a temporal data authorization model (TDAM) for access control to temporal data.
This work is orthogonal to our approach, since we focus on the temporal authorization
and usage process, while TDAM focuses on the temporal attributes of data. For formal
specifications with temporal logic in security policies, Siewe et al. [53] apply interval
temporal logic to express and compose access control polices, and Hansen and Sharp [22]
introduce an approach for the analysis of security protocols using interval logic. The main
difference in our approach is that we focus on the atomic actions and temporal properties
during a single usage process, while their approaches focus on a higher level of system
policies or security protocols.

Joshi et al. [27] presented a generalized temporal RBAC model (GTRBAC) to specify
temporal constraints in role activation, user-role assignment, and role-permission assign-
ment. For example, a user can only activate a role for a particular duration. The concept of
temporal constraint is different from the mutability of UCON since it does not have update
actions. The dependency constraint in GTRBAC [28] is similar to the concept of obliga-
tion in UCON, but the dependency is more like the implication relation between events in
GTRBAC, i.e., if an event happens, it triggers another event; while in UCON, obligations
are explicit required actions to permit an access.

Bettini et al. [12, 13] present concepts of provisions and obligation in policy manage-

ment: provisions are conditions or actions performed by a subject before the authorization

71

decision, while obligations are conditions or actions performed after an access. In our
model, we distinguish between conditions and obligations. All the actions that a subject
has to perform before usage are regarded as obligations, while for future actions, we con-
sider them as the obligations for future usage requests or long-term obligations. Chomicki
and Lobo [16] investigate the conflicts and constraints of historical actions in policies. In
their paper, actions are application activities, and constraints are expressed with linear-time
temporal connectors. In our paper we define obligations as actions required by an access,

and represent the logic approach with TLA.

3.9 Summary

In this chapter | have developed a formal model of UCON with temporal logic of actions.

A model is given by a set of system states in a single usage process, specified by a set of
subjects and their attributes, a set of objects and their attributes, and the system attributes.
The authorization predicates are built from subject and object attributes. Actions are the
state transitions of the system, including usage control actions to update attributes and
accessing status of a usage process, and obligation actions that have to be satisfied before
or during an access. Conditions are predicates on system attributes. Temporal formulae
represent usage control policies and are built from authorization predicates, actions, and
system predicates. | prove that a fixed set of scheme rules can be used in general UCON
policy specifications with soundness and completeness properties. The flexibility of the
policy language is illustrated by expressing policies for various applications. The powerful
specification capability of the extended TLA strengthens UCON with precise modeling and

specification.

Chapter 4: Expressive Power

The policy specification flexibility of UCON has been conceptually shown in previous work
and formally illustrated in the previous chapter. This chapter studies the expressive power
of UCON by simulating some traditional access control models. For this purpose a formal
UCON model is defined to formalize the accumulative effect of a usage process. The
relative expressive power of UCON authorization models (UGP&ahd UCON obligation
models (UCON;) are studied.

In UCON condition models, a usage control decision is determined by some environ-
mental restrictions dependant on system attributes. Since how system attributes change is
not captured in UCON core models, the expressive power cannot be compared with other

models.

4.1 Formal Model of UCON,4 and UCONpg

The logical model of UCON developed in Chapter 3 can precisely capture the new features
of UCON, such as the attribute mutability and the decision continuity, but it is not appro-
priate to compare its expressive power to that of other access control models. The main
reason is that the logical model specifies the detailed state change of the system in a single
usage process, while for the expressive power, the overall effect of a usage process needs to
be formulated. This is further motivated by the safety analysis of UCON, since the safety

problem focuses on the permission propagation as the accumulative result of a sequence of

72

73

usage processes.

As another reason, the creating and destroying of subjects and objects are not formu-
lated in the logical model developed in Chapter 3, since the logical model focuses on the
temporal characteristics of the system state in a single usage process, and the accessing
subject and the target object must exist in the system before the access request, as assumed
in Section 3.3.1, that is, the logical model is developed to specify policies for UCON core
models, where creating and destroying of subjects and objects are not included. Practically,
all objects except the objects in the initial state are created in a system, and an object can be
destroyed by a subject under particular circumstances. For example, in UCON, a derivative
object is “derived from the original work” [38, 39]. “To provide mutual protection on the
rights of all involved subjects (consumer, provider, and/or identifiee subjects), just like the
original object, these derivative objects also have to be considered as target objects and
must hold UCON properties and relations with other components” [38, 39]. That is, an
object can be created from an existing object and includes some information of the original
object, and needs to be protected. Usage log and payment information are typical derived
objects in UCON. Although previously mentioned, the creating and destroying of subjects
and objects are not included in UCON core models. To make the model more practical
and complete to express policies for real systems, the policies of what kind of subjects and
objects can be created, and how a subject or an object can be destroyed should be captured
by a UCON model.

Because of these reasons, in this chapter a new formal model is proposed to capture

the global effect of a usage process and the accumulative result of a sequence of usage

74

processes. Specifically, a single usage process is atomic, and all usage processes are seri-
alized in a system. By serialized processes we mean that there is no interference between
any two usage processes, so that the net effect is as though the individual usage processes
executed serially one after another. We do not specify precisely how the serialization is
achieved, since there are many standard techniques known for this purpose. The details of
how to achieve serialization is an implementation-level issue as opposed to a model-level
issue. Based on this, a set of policies are defined to specify the authorization predicates
for usages, and sequences of primitive actions as the side-effect results. Also, policies for
creating and destroying subjects and objects are defined.

This section presents the formal definition of UCQ($pecifically,pre A) and UCON;
(specifically,preB). Some components of the models are introduced in Chapter 3, but for

the consistency and completeness of the presentation they are re-defined in this chapter.

4.1.1 UCON4

Subjects, Objects, and Rights

The subject, object and right abstractions are well known in access control. Generally
speaking, a subject is an active object that can invoke some access requests or execute
some permissions on another object, such as a process that opens a file for reading. A
subject, in turn, can be accessed by another subject, e.g., a process can be created, stopped
or killed by another process. Following the general concepts in traditional access control
models, we consider the set of subjects in UCQblbe a subset of the set of objects. The
objects that are not subjects are called pure objects. We require that each object is specified

with an identity, called name, which is unique and cannot be changed, and cannot be reused

75

after the object is destroyed in the system. This unique name in many cases will not be the
identity of a user. For example, a process executing on behalf of a user will have a process
identity and not a user identity.

Rights are a set of privileges that a subject can hold and execute on an object, such as
read, write, pause, etc. In access control systems, a right enables the access of a subject
to an object in a particular mode, referred to as a permission. Formally, a permission is
atriple(s,o,7), wheres, o, r are a subject, object, and right, respectively. In UGOH
permission is enabled by an authorization rule in a policy.

The set of subjects, objects, and rights are denotet] & and R, respectively, where

S CO.

Attributes, Values, and States

Each object is specified with a non-empty and finite set of attributes. An attribute of an
object is denoted asa whereo is the object name (i.e., the object’s unique identity) and
a is the attribute name. Note that an object name without any attribute specified denotes
its identity attribute. Without loss of generality, we assume that in a system, every object
has the same fixed set of attribute nam&s". The domain of the attributeis denoted as
dom(a), and we assume that fare ATT', null ¢ dom(a).

An assignment of an attribute maps its attribute name to a value in its domain, denoted
aso.a = v, wherev € dom(a) U {null}. The set of assignments for all objects’ attributes

collectively constitute a state of the system.

Definition 3. A system stateor state is a pair (O, o), whereO is a set of objects, and

o0:0 xATT — |, carrdom(a) U {null} is a function that assigns a value exl! to

76

each attribute of each object, wheréo, a) € dom(a) U {null}.

Predicates

Definition 4. A predicatep(s, 0) is a boolean-valued polynomially computable functton

built from a set of a subjects and an objecb’s attributes and constants.

The semantics of a predicate is a mapping from states to boolean values. A state satisfies
a predicate if the attribute values assigned in this state satisfy this predicate. Similar to the
previous chapter, unary and binary predicates can be defined based on a single object or

two different objects.

Primitive Actions

A protection system evolves by the activities of the subjects, such as requesting and per-
forming one or a sequence of accesses, which in turn may generate new objects in the
system, or update the values of attributes corresponding to a set of usage control policies

(defined shortly). Three kinds of primitive actions are defined in UGON

Definition 5. A Primitive action(or simplyaction) is a state transition of a system. Three
primitive actions of UCOIY are defined as in the Table 4.1, where- (O, o) andt’ =

(O',0") are the states before and after a single primitive action.

A createObject action introduces a new object into the system, and requires that
the new object not be in the system before the creation. Each attribute of the newly

created object has the default valuerafil. Normally acreateObject is followed by

1As a predicate takes at most two parameters of objects, the function is polynomial in the number of object

attributes and the size of their value domains.

77

Actions | Conditions | New States
createObject o' o' ¢ 0 O'=0U{0}
Yo € 0,a € ATT, 0’ (0.a) = o(0.a)
Va € ATT,o'(0'.a) = null
destroyObject o 0€0 0" =0 —{o}
Yo € O',Va € ATT, § (0.a) = 6(0.a)
updateAttribute o.a: | o € O,a € ATT O =0
o.a=v v € dom(a) U{null} | Vent € O,att € ATT, o'(ent.att) = o(ent.att)
if ent # o andatt # a, o'(0.a) =’

Table 4.1: Primitive actions

update Attribute actions to assign values to its attributes. ThetroyObject removes an
existing object and its attributes from the system. For simplicity we assume that the identity
of an object is unique during the system’s life cycle, and cannot be reused even after the
object is destroyed. Thepdate Attribute action updates the value of an attribute from

v to the new value’ which can be a constant, or the result generated by a polynomially
computable function built from the old valueand other attribute values of the subject and

object parameters of the policy.

UCON, Policy

Satisfied predicates on attributes in UCQAIffect the system in two ways. First, a set of
satisfied predicates can authorize a permission so that a subject can access an object with a
particular right. Second, a set of satisfied predicates may authorize the system to move to a
new state with a sequence of primitive actions, e.g., by creating a new object, or updating
attribute values, which result from the allowed access. These actions, in turn, may make
other predicates satisfied, and then enable other permissions and system state changes. The
safety analysis of UCON(in the next chapter) focuses on the interactions between these

two aspects, e.g, the permissions authorized by a system state and the state changes caused

78

by the actions.
Access authorizations and the state transitions are specified by a set of pre-defined

policies in a system.

Definition 6. A policy of UCON consists of a name, two parameter objects, an authoriza-

tion rule, and a sequence of primitive actions as follows:

policy_namés, o):
pLAp2 A Ap; — permit(s,o,7)

acty; acta; ... ; acty,

wheres ando are the subject and object parameteps; p-, . . . , p; are predicates based on
s's and o’s attributes and constantgiermit(s, o, r) is a predicate which indicates that a
permission(s, o, r) is authorized by the systemtifue; acty, acts, ..., acty are primitive

actions that are performed anor o or their attributes.

We assume that is the active object in a policy, so it is the subject that attempts an
operation requiring the right on the target object. It is also possible to have = o,
wherein a subject performs some operation on itself.

A policy includes two parts. The first part is an authorization rule consisting of a con-
junction of attribute predicates, called thenditionof the policy, followed by apermit
predicate implied by the condition. The second part is a sequence of primitive actions,
called thebodyof the policy. The first part specifies a permission authorized by the state
of the system, while the second part is the side-effect of executing this permission, thereby
changing the current state of the system to a new state. Note that there may be policies

that have no actions but only authorization rules, e.g., similar tpithd, in the previous

79

chapter. Enforcing a policy without actions causes no state transition of the system. In
any state, a permission that is rprmitted explicithyby a policy is denied by default. In
general the UCON model only considers positive permissions.

As it shows, a policy here includes the authorization predicates for a usage and the
resulting actions. Instead of using themitaccess action as that in the logical model, the
permit predicate indicates whether an access is permitted or not, and hides the individual
actions in the usage process, that is, the new policy specifies the overall effects on the
system state for a usage process. This approach captures the essential aspect of system
state transitions and permission propagations caused by the attribute mutability of UCON,
while maintaining the simplicity of the policy specifications.

Note that by the policy definition we assume that all the authorization predicates in a
policy are considered as pre-authorizations, and all the updates as post-updates. That is,
the UCON,; model defined in this sectionjgeAz. As all usage processes are serialized in
a UCON; system, and a policy captures the overall effects of the system state after a usage
process, the updates in a policy can also be considered as pre-updates or ongoing updates,
which would make the modelre A, or preA,, respectively. All expressive power and
safety analysis results derived fpre A3 thereby also hold fopreA; andpreAs. For the
sake of simplicity, we assume without loss of generality that the UG@Mdel considered

in this chapter and next chapter iga A3 model.

Definition 7. A policy is acreating policyif it contains acreateObject action in its body;

otherwise, it ismnon-creating

A policy is enforced when an access requested is generated. Therefore, at least one of

its parameters exists in the system before the request, and a creating policy can contain at

80

most onecreateObject action. Without loss of generality, we assume that, in a creating
policy, the first parameter which is theparentobject must exist before the actions, and

o is created as ahild object. Hence, UCON is a single-parent creation model. Also,

we can assume that, in a policy, there is at most one update action for any attribute of
an object, since multiple updates on the same attribute can be reduced to a single update
with the value of the last one. Negated predicates are not explicitly required since we can
always define new predicates equivalent to negated predicates. For example, instead of
—(s.credit > $1000), we use(s.credit < $1000). Similarly, disjunction of predicates is

not explicitly required since it can be expressed by a set of individual policies, one for each
component of the disjunction.

A policy is enforced by replacing the two parameters with a pair of actual subject and
object names when the subject generates an access request on the object with a particu-
lar right. If the condition of the policy and all the conditions for the primitive actions are
satisfied, then the permission is authorized, and all the primitive actions are performed.
Otherwise, the permission is not granted, and the system does not change state. As men-
tioned, we assume that all accesses in a system are serialized, and that the enforcement of
each policy is atomic, either an access is granted and all the primitive actions are completed,
or the system state does not change.

Example 20 Suppose that a document can only be issueddmyentist(with role sci). For

anonymousisers, this document can only be read 10 times. We define the available times
(readTimes) as an object attribute. Each time an anonymous user is authorized to read a
document, this attribute is updated by decreasing it by one. The policies in this application

are:

81

create_doc(s, doc):
(s.role = sci) — permit(s, doc, create)
createObject doc

update Attribute: doc.readTimes’ = 10

read_doc(s, doc):
(s.role = anonymous) A (doc.readTimes > 0) — permit(s, doc, read)

update Attribute: doc.readTimes’” = doc.readlimes — 1

The first creating policy specifies that a subject in the kolecancreatea new document,
and thereadTimes attribute of this new object is set 10. In the second policy, a subject
with role anonymous can be authorized teead a document if its-eadT'imes attribute is
positive; as a result of this permission, the value of the attribeddTimes is decreased

by one. O

UCON, Protection System

A formal representation of a UCONsystem can be defined with the basic components

that we have introduced.

Definition 8. A UCON, schemes a 4-tuple(ATT, R, P,C), whereATT is a finite set of
attribute namespR is a finite set of rightsp is a finite set of predicates, ard is a finite
set of policies. A UCON protection systenfor simplysysten) is specified by a UCON

scheme and an initial stat@),, o).

Definition 9. Given a UCON system, thgermission functiorof a statet = (O, 0) is

p: O x O — 28 andifr € p(s, 0), then in the state, the subject can access the object

82

o with the rightr according to at least one policy.

The functionp, maps a pair (subject, object)to a set of generic rights, according
to their attribute-value assignments in stai@nd the set of policies in the scheme. In a
particular state, the value pf(s, o) can be determined by trying each policy in the scheme
with the attribute-value assignmentsofndo. With the finite number of predicates in a
policy and the finite number of policies in a scheme, the complexity of compytifay a

pair (s, 0) is O(|P| x |C).
Definition 10. For two stategO,, 0;) and (O, oy) of a system:

e t —.t' (c € C)if there exist a pair of object&, o) (01 € O;) such that the policy

c(o1, 02) can be enforced in the stateand the system state changeg'to
e t ¢ t'if there exist & € C such that — t/;

e t ~~¢ t'if there exist a sequence of statgst,,...,t, such thatt —¢ t; —¢

tg---—»ctn—»ct/.

A transition historyfrom statet to statet’ is denoted as ~»¢ t/, or simplyt ~- t'.

4.1.2 UCONg

A usage control decision in UCQONis determined by obligation actions. The subject
and object attribute predicates, system states, primitive actions, permission function, and
system state transition history are defined as in UGOResides that, a UCONpolicy

includes one or more obligation actions.

°Note that a subject is also an object in the model.

83

Definition 11. An obligation actionis represented by a boolean-valued expression built

from an obligation name, an obligation subject, and an obligation object.

Definition 12. A policy of UCON consists of a hame, a set of parameter objects, an

obligation rule, and a sequence of actions as follows:

policy_namés, o, sby, oby, sb, 0bs, . . ., sb;, 0b;):

P1AD2 A~ - ApiA b1 (8by, 0b1) Aba(sbg, 0by) - - - Ab;(sbj, 0b;) — permit(s,o,r)

acty; acty; ... acty
wheres ando are the requesting subject and the target object of the aceégsib, . . ., sb;, ob;
are the obligation subjects and objects for the obligation . . , b;, respectivelyp,, ..., p;

are predicates based on the attributes of all parameter subjects and objgetsnit(s, o,)
is the decision predicateicty, acts, . . . , act;, are primitive actions that are performed en

or o or their attributes.

A UCONg; policy includes two parts: an obligation rule consisting of a conjunction of
predicates and actions, which is called ttwmditionof the policy, followed by germit
action implied by the condition, and a sequence of primitive actions, which is called the
bodyof the policy. Attribute predicates in a UCQNpolicy identify what kind of obliga-
tions are required for the usage. For example, a child’s downloading of a movie requires

his/her parent to sign an agreement. A predicate is needed to bind the requesting subject

3Because of the informal conceptual model of UCON preB given in [39], it is ambiguous how to fully
formulate it. We describe one approach here. Specifically, the predicates in a §@alidy capture the
predicateget PreOBL in Definition 8 in [39], but is more powerful than needed just for this purpose. For
instance, they allow the testing of attributes of obligation subjects and obligation objects, which is not used

in the subsequent construction of this chapter.

84

and obligation subject. The predicates in a UGOpblicy are not for authorization rea-
son, e.g., the relation of the obligation subject and the requesting subject cannot enable the
permission of the acces